18.為了得到函數(shù)y=2cos2x的圖象,可以將函數(shù)y=1+cosx圖象上所有的點( 。
A.橫坐標伸長到原來的2倍,縱坐標不變
B.橫坐標縮短到原來的$\frac{1}{2}$倍,縱坐標不變
C.縱坐標伸長到原來的2倍,橫坐標不變
D.縱坐標縮短到原來的$\frac{1}{2}$倍,橫坐標不變

分析 利用二倍角公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結論.

解答 解:由于函數(shù)y=2cos2x=2•$\frac{1+cos2x}{2}$=cos2x+1,
∴要得到得函數(shù)y=2cos2x的圖象,
可以將函數(shù)y=1+cosx圖象上所有的點橫坐標縮短到原來的$\frac{1}{2}$倍,縱坐標不變,
故選:B.

點評 本題主要考查二倍角公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{2}$ax2+2alnx+(a-2)x,a∈R.
(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)是否存在實數(shù)a,對任意的x1,x2∈(0,+∞),且x1≠x2,有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{2}-{x}_{1}}$<a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在△ABC中,若$\overrightarrow{AC}$2=$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$+$\overrightarrow{CA}$•$\overrightarrow{CB}$,則△ABC是( 。
A.等邊三角形B.銳角三角形C.鈍角三角形D.直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.甲、乙、丙、丁四個人去旅游,可供選擇的景點有3個,每人只能選擇一個景點且甲、乙不能同去一個景點,則不同的選擇方案的種數(shù)是(  )
A.54B.36C.27D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某工廠有甲乙兩個車間,每個車間各有3臺機器.甲車間每臺機器每天發(fā)生故障的概率均為$\frac{2}{5}$,乙車間3臺機器每天發(fā)生故障的概率分別為$\frac{1}{5}$,$\frac{1}{5}$,$\frac{3}{5}$.若一天內(nèi)同一車間的機器都不發(fā)生故障可獲利2萬元,恰有一臺機器發(fā)生故障仍可獲利1萬元,恰有兩臺機器發(fā)生故障的利潤為0萬元,三臺機器發(fā)生故障要虧損3萬元.
(Ⅰ)求乙車間每天機器發(fā)生故障的臺數(shù)的分布列;
(Ⅱ)由于節(jié)能減排,甲乙兩個車間必須停產(chǎn)一個.以工廠獲得利潤的期望值為決策依據(jù),你認為哪個車間停產(chǎn)比較合理.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=Asinx+cosx,A>0.
(1)若A=1,求f(x)的單調(diào)遞增區(qū)間;
(2)函數(shù)f(x)在x=x0處取得最大值$\sqrt{13}$,求cosx0 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.曲線y=cosx在點($\frac{π}{3}$,$\frac{1}{2}$)處的切線的斜率為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知數(shù)列{an}的前n項和為Tn,a1=1且a1+2a2+4a3+…+2n-1an=2n-1,則T8-2等于(  )
A.$\frac{31}{32}$B.$\frac{255}{64}$C.$\frac{63}{64}$D.$\frac{127}{128}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.等差數(shù)列{an}中,a1<0,S9=S12,若Sn有最小值,則n=( 。
A.10B.10或11C.11D.9或10

查看答案和解析>>

同步練習冊答案