1.運行如圖所示框圖的相應(yīng)程序,若輸入a,b的值分別為log43和log34,則輸出M的值是(  )
A.0B.1C.3D.-1

分析 確定log34>log43,可得M=log34•log43-2,計算可得結(jié)論.

解答 解:∵log34>1,0<log43<1,
∴l(xiāng)og34>log43,
∴M=log34•log43-2=-1,
故選:D.

點評 本題考查程序框圖,考查學(xué)生的計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合A={x|(x-1)(x-3)<0},B={y|y=2x,x∈[1,2]},則A∩B=( 。
A.B.(1,3)C.[2,3)D.(1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}的各項都是正數(shù),且對任意n∈N*,都有an2=2Sn-an,其中Sn為數(shù)列{an}的前n項和.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=2n+λ•3${\;}^{{a}_{n}}$(n∈N*),若使得對任意n∈N*,都有bn+1<bn成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|x+2|-2|x-1|.
(Ⅰ)求不等式f(x)≥-2的解集M;
(Ⅱ)對任意x∈[a,+∞),都有f(x)≤x-a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1(-c,0),F(xiàn)2(c,0),以線段F1F2為直徑的圓與雙曲線在第二象限的交點為P,若直線PF2與圓E:(x-$\frac{c}{2}$)2+y2=$\frac{^{2}}{16}$相切,則雙曲線的漸近線方程是( 。
A.y=±xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知直線x+2y-1=0與直線2x+my+4=0平行,則m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在平面直角坐標(biāo)系xoy中,直線l:y=2x-4,圓C的半徑為1,圓心在直線l上,若圓C上存在點M,且M在圓D:x2+(y+1)2=4上,則圓心C的橫坐標(biāo)a的取值范圍是(  )
A.$[{\frac{3}{5},2}]$B.$[{0,\frac{12}{5}}]$C.$[{2-\frac{2}{5}\sqrt{5},2+\frac{2}{5}\sqrt{5}}]$D.$[{0,2-\frac{2}{5}\sqrt{5}}]∪[{2+\frac{2}{5}\sqrt{5},4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個焦點為F1,F(xiàn)2,離心率為$\frac{\sqrt{6}}{3}$,點A,B在橢圓上,F(xiàn)1在線段AB上,且△ABF2的周長等于4$\sqrt{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過圓O:x2+y2=4上任意一點P作橢圓C的兩條切線PM和PN與圓O交于點M,N,求△PMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案