【題目】已知f(x)=|2x﹣1|+|5x﹣1|
(1)求f(x)>x+1的解集;
(2)若m=2﹣n,對(duì)m,n∈(0,+∞),恒有 成立,求實(shí)數(shù)x的范圍.
【答案】
(1)解: ,
故x> 時(shí),7x﹣2>x+1,解得:x> ,
≤x≤ 時(shí),3x>x+1,解得:x> ,
x< 時(shí),2﹣7x>x+1,解得:x< ,
故f(x)>x+1的解集為
(2)解:因?yàn)? ,
當(dāng)且僅當(dāng) 時(shí)等于號(hào)成立.
由 解得x的取值范圍為
【解析】(1)通過(guò)討論x的范圍,求出各個(gè)區(qū)間上的x的范圍,取交集即可;(2)根據(jù)基本不等式的性質(zhì)求出x的范圍即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對(duì)值不等式的解法的相關(guān)知識(shí),掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足:a1=1且an+1=2an+1,n∈N* , 設(shè)bn=n(an+1),則數(shù)列{bn}的前n項(xiàng)和Sn= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f'(x)是函數(shù)f(x)的導(dǎo)數(shù),f'(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f'(x)=0有實(shí)數(shù)解x0 , 則稱(chēng)點(diǎn)(x0 , f(x0))為函數(shù)f(x)的拐點(diǎn).某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有拐點(diǎn),任何一個(gè)三次函數(shù)都有對(duì)稱(chēng)中心,且拐點(diǎn)就是對(duì)稱(chēng)中心,
設(shè)函數(shù)g(x)=x3﹣3x2+4x+2,利用上述探究結(jié)果
計(jì)算: =
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的方程為y=x+2,點(diǎn)P是拋物線y2=4x上到直線l距離最小的點(diǎn),點(diǎn)A是拋物線上異于點(diǎn)P的點(diǎn),直線AP與直線l交于點(diǎn)Q,過(guò)點(diǎn)Q與x軸平行的直線與拋物線y2=4x交于點(diǎn)B.
(Ⅰ)求點(diǎn)P的坐標(biāo);
(Ⅱ)證明直線AB恒過(guò)定點(diǎn),并求這個(gè)定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)求f(x)單調(diào)遞減區(qū)間;
(2)已知△ABC中,滿(mǎn)足sin2B+sin2C>sinBsinC+sin2A,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】上海市松江區(qū)天馬山上的“護(hù)珠塔”因其傾斜度超過(guò)意大利的比薩斜塔而號(hào)稱(chēng)“世界第一斜塔”.興趣小組同學(xué)實(shí)施如下方案來(lái)測(cè)量塔的傾斜度和塔高:如圖,記O點(diǎn)為塔基、P點(diǎn)為塔尖、點(diǎn)P在地面上的射影為點(diǎn)H.在塔身OP射影所在直線上選點(diǎn)A,使仰角k∠HAP=45°,過(guò)O點(diǎn)與OA成120°的地面上選B點(diǎn),使仰角∠HPB=45°(點(diǎn)A,B,O都在同一水平面上),此時(shí)測(cè)得∠OAB=27°,A與B之間距離為33.6米.試求:
(1)塔高(即線段PH的長(zhǎng),精確到0.1米);
(2)塔身的傾斜度(即PO與PH的夾角,精確到0.1°).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的組合體中,三棱柱ABC﹣A1B1C1的側(cè)面ABB1A1是圓柱的軸截面,C是圓柱底面圓周上不與A、B重合的一個(gè)點(diǎn).
(Ⅰ)若圓柱的軸截面是正方形,當(dāng)點(diǎn)C是弧AB的中點(diǎn)時(shí),求異面直線A1C與AB1的所成角的大。
(Ⅱ)當(dāng)點(diǎn)C是弧AB的中點(diǎn)時(shí),求四棱錐A1﹣BCC1B1與圓柱的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|),x∈R;
(1)求實(shí)數(shù)a、b的值;
(2)若不等式 對(duì)任意x∈R恒成立,求實(shí)數(shù)k的范圍;
(3)對(duì)于定義在[p,q]上的函數(shù)m(x),設(shè)x0=p,xn=q,用任意xi(i=1,2,…,n﹣1)將[p,q]劃分成n個(gè)小區(qū)間,其中xi﹣1<xi<xi+1 , 若存在一個(gè)常數(shù)M>0,使得不等式|m(x0)﹣m(x1)|+|m(x1)﹣m(x2)|+…+|m(xn﹣1)﹣m(xn)|≤M恒成立,則稱(chēng)函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試證明函數(shù)f(x)是在[1,3]上的有界變差函數(shù),并求出M的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)曲線y=xn+1(n∈N+)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn , 則log2015x1+log2015x2+…+log2015x2014的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com