【題目】已知 , ,當(dāng)k為何值時,
(1)與 垂直?
(2)與 平行?平行時它們是同向還是反向?
【答案】
(1)
解:k
=(1,2)﹣3(﹣3,2)=(10,﹣4)
,得 =10(k﹣3)﹣4(2k+2)=2k﹣38=0,k=19
(2)
解: ,得﹣4(k﹣3)=10(2k+2),k=﹣
此時k (10,﹣4),所以方向相反
【解析】先求出 的坐標(biāo),(1)利用向量垂直的充要條件:數(shù)量積為0,列出方程求出k.(2)利用向量共線的坐標(biāo)形式的充要條件:坐標(biāo)交叉相乘相等,列出方程求出k,將k代入兩向量的坐標(biāo),判斷出方向相反.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)量積判斷兩個平面向量的垂直關(guān)系的相關(guān)知識,掌握若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,漁船甲位于島嶼A的南偏西60°方向的B處,且與島嶼A相距12海里,漁船乙以10海里/小時的速度從島嶼A出發(fā)沿正北方向航行,若漁船甲同時從B處出發(fā)沿北偏東α的方向追趕漁船乙,剛好用2小時追上.
(1)求漁船甲的速度;
(2)求sinα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠最近十年生產(chǎn)總量逐年上升,如表是部分統(tǒng)計數(shù)據(jù):
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
生產(chǎn)總量(萬噸) |
(Ⅰ)利用所給數(shù)據(jù)求年生產(chǎn)總量與年份之間的回歸直線方程;
(Ⅱ)利用(Ⅰ)中所求出的直線方程預(yù)測該廠2018年生產(chǎn)總量.
(回歸直線的方程: ,其中, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(2,1), =(1,7), =(5,1),設(shè)X是直線OP上的一點(O為坐標(biāo)原點),那么 的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于下列命題
①函數(shù)y=tanx在第一象限是增函數(shù);
②函數(shù)y=cos2( ﹣x)是偶函數(shù);
③函數(shù)y=4sin(2x﹣ )的一個對稱中心是( ,0);
④函數(shù)y=sin(x+ )在閉區(qū)間[﹣ , ]上是增函數(shù);
寫出所有正確的命題的題號: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的兩個焦點是F1(﹣2,0),F(xiàn)2(2,0),且橢圓C經(jīng)過點A(0, ).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過橢圓C的左焦點F1(﹣2,0)且斜率為1的直線l與橢圓C交于P、Q兩點,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E為BB1中點.
(1)證明:AC⊥D1E;
(2)求DE與平面AD1E所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0, )的圖象如圖所示.
(1)求A,w及φ的值;
(2)若tana=2,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com