已知|
a
|=4,|
b
|=1,|
a
-2
b
|=4,則cos<
a
,
b
>=
 
分析:由題意可得
a
2
-4
a
b
+4
b
2
=16,即16-4×4×1×cos<
a
,
b
>+4=16,由此解得cos<
a
,
b
>的值.
解答:解:根據(jù)已知|
a
|=4,|
b
|=1,|
a
-2
b
|=4,可得
a
2
-4
a
b
+4
b
2
=16,
即 16-4×4×1×cos<
a
b
>+4=16,解得cos<
a
b
>=-
1
4
,
故答案為-
1
4
點評:本題主要考查兩個向量的數(shù)量積的定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=4
,|
b
|=
3
a
b
=6
,求
(1)(
a
-
b
)•
b
;
(2)求|
a
+
b
|

(提示:|
a
|2=
a
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=4,b=2,且焦點在x軸上的橢圓標準方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,已知a=4,∠B=45°,若解此三角形時有且只有唯一解,則b的值應(yīng)滿足
b>4或b=2
2
b>4或b=2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61

求(1)
a
b
的夾角

(2)|
a
+
b
|的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61.
(1)求
a
b
的夾角為θ;
(2)求|
a
+
b
|;
(3)若
AB
=
a
,
AC
=
b
,作三角形ABC,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案