【題目】如圖放置的邊長為1的正方形沿軸滾動點(diǎn)恰好經(jīng)過原點(diǎn).設(shè)頂點(diǎn)的軌跡方程是,則對函數(shù)有下列判斷①函數(shù)是偶函數(shù);②對任意的都有;③函數(shù)在區(qū)間上單調(diào)遞減;④函數(shù)的值域是;⑤.其中判斷正確的序號是__________

【答案】①②⑤

【解析】

根據(jù)正方形的運(yùn)動,得到點(diǎn)P的軌跡方程,然后根據(jù)函數(shù)的圖象和性質(zhì)分別進(jìn)行判斷即可.

當(dāng)﹣2≤x≤﹣1,P的軌跡是以A為圓心,半徑為1的圓,

當(dāng)﹣1≤x≤1時(shí),P的軌跡是以B為圓心,半徑為圓,

當(dāng)1≤x≤2時(shí),P的軌跡是以C為圓心,半徑為1的圓,

當(dāng)3≤x≤4時(shí),P的軌跡是以A為圓心,半徑為1的圓,

∴函數(shù)的周期是4.

因此最終構(gòu)成圖象如下:

①,根據(jù)圖象的對稱性可知函數(shù)yfx)是偶函數(shù),故①正確;

②,由圖象即分析可知函數(shù)的周期是4.

fx+4)=fx),即fx+2)=fx﹣2),故②正確;

③,函數(shù)yfx)在區(qū)間[2,3]上單調(diào)遞增,

故③錯(cuò)誤;

④,由圖象可得fx)的值域?yàn)閇0,],故④錯(cuò)誤;

⑤,根據(jù)積分的幾何意義可知fxdxπ(21×1π×12,

故⑤正確.

故答案為:①②⑤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推動文明城市創(chuàng)建,提升城市整體形象,20181230日鹽城市人民政府出臺了《鹽城市停車管理辦法》,201931日起施行.這項(xiàng)工作有利于市民養(yǎng)成良好的停車習(xí)慣,幫助他們樹立綠色出行的意識,受到了廣大市民的一致好評.現(xiàn)從某單位隨機(jī)抽取80名職工,統(tǒng)計(jì)了他們一周內(nèi)路邊停車的時(shí)間(單位:小時(shí)),整理得到數(shù)據(jù)分組及頻率分布直方圖如下:

組號

分組

頻數(shù)

1

6

2

8

3

22

4

28

5

12

6

4

1)從該單位隨機(jī)選取一名職工,試計(jì)算這名職工一周內(nèi)路邊停車的時(shí)間少于8小時(shí)的頻率;

2)求頻率分布直方圖中的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn),且橢圓過點(diǎn),,且是橢圓上位于第一象限的點(diǎn),且的面積.

1)求點(diǎn)的坐標(biāo);

2)過點(diǎn)的直線與橢圓相交于點(diǎn),,直線軸相交于,兩點(diǎn),點(diǎn),則是否為定值,如果是定值,求出這個(gè)定值,如果不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,nN*.

1)設(shè)f(x)=a0+a1x+a2x2++anxn,

①求a0+a1+a2++an;

②若在a0,a1,a2,…,an中,唯一的最大的數(shù)是a4,試求n的值;

2)設(shè)f(x)=b0+b1(x+1)+b2(x+1)2++bn(x+1)n,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2012年12月18日,作為全國首批開展空氣質(zhì)量新標(biāo)準(zhǔn)監(jiān)測的74個(gè)城市之一,鄭州市正式發(fā)布數(shù)據(jù).資料表明近幾年來,鄭州市霧霾治理取得了很大成效,空氣質(zhì)量與前幾年相比得到了很大改善.鄭州市設(shè)有9個(gè)監(jiān)測站點(diǎn)監(jiān)測空氣質(zhì)量指數(shù)(),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有2,5,2個(gè)監(jiān)測站點(diǎn),以9個(gè)站點(diǎn)測得的的平均值為依據(jù),播報(bào)我市的空氣質(zhì)量.

(Ⅰ)若某日播報(bào)的為118,已知輕度污染區(qū)的平均值為74,中度污染區(qū)的平均值為114,求重度污染區(qū)的平均值;

(Ⅱ)如圖是2018年11月的30天中的分布,11月份僅有一天內(nèi).

組數(shù)

分組

天數(shù)

第一組

3

第二組

4

第三組

4

第四組

6

第五組

5

第六組

4

第七組

3

第八組

1

①鄭州市某中學(xué)利用每周日的時(shí)間進(jìn)行社會實(shí)踐活動,以公布的為標(biāo)準(zhǔn),如果小于180,則去進(jìn)行社會實(shí)踐活動.以統(tǒng)計(jì)數(shù)據(jù)中的頻率為概率,求該校周日進(jìn)行社會實(shí)踐活動的概率;

②在“創(chuàng)建文明城市”活動中,驗(yàn)收小組把鄭州市的空氣質(zhì)量作為一個(gè)評價(jià)指標(biāo),從當(dāng)月的空氣質(zhì)量監(jiān)測數(shù)據(jù)中抽取3天的數(shù)據(jù)進(jìn)行評價(jià),設(shè)抽取到不小于180的天數(shù)為,的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),過點(diǎn)作與軸平行的直線交函數(shù)的圖像于點(diǎn),過點(diǎn)圖像的切線交軸于點(diǎn),則面積的最小值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,點(diǎn)在橢圓上,橢圓的離心率是.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)為橢圓長軸的左端點(diǎn),為橢圓上異于橢圓長軸端點(diǎn)的兩點(diǎn),記直線斜率分別為,若,請判斷直線是否過定點(diǎn)?若過定點(diǎn),求該定點(diǎn)坐標(biāo),若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在中, , , 的平分線,點(diǎn)在線段上, .如圖2所示,將沿折起,使得平面平面,連結(jié),設(shè)點(diǎn)的中點(diǎn).

圖1 圖2

(1)求證: 平面;

(2)在圖2中,若平面,其中為直線與平面的交點(diǎn),求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案