已知函數(shù),其中,是自然對數(shù)的底數(shù).
(1)求函數(shù)的零點;
(2)若對任意均有兩個極值點,一個在區(qū)間(1,4)內(nèi),另一個在區(qū)間[1,4]外,求a的取值范圍;
(3)已知,且函數(shù)在R上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.
(1)(2)(3)函數(shù)在R上是減函數(shù)

試題分析:(1)
的零點問題轉(zhuǎn)化為方程的根的問題.
(2)因為,由題設(shè)可知有兩個兩點,其中一個在,一個在,解這個不等式,可得實數(shù)的取值范圍.
(3)
由函數(shù)在R上是單調(diào)函數(shù),所以,得到的關(guān)系,然后由此關(guān)系推出.
試題解析:
解:(1),
g(x)="0," 有ex-1=0,即x=0;或 x2-2xa=0;,
①當(dāng)時,函數(shù)有1個零點 ;  1分
②當(dāng)時,函數(shù)有2個零點;2分
③當(dāng)時,函數(shù)有兩個零點;3分
④當(dāng)時,函數(shù)有三個零點:
   4分
(2),5分
設(shè)的圖像是開口向下的拋物線,
由題意對任意有兩個不等實數(shù)根
則對任意,
,有,7分
又任意關(guān)于遞增, ,
,所以.
所以的取值范圍是  9分
(3)由(2)知, 存在,又函數(shù)在R上是單調(diào)函數(shù),故函數(shù)在R上是單調(diào)減函數(shù), 10分
來說
 11分  
所以對于函數(shù)來說
 12分
即對任意
故函數(shù)在R上是減函數(shù).   13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時,求函數(shù)在點(1,1)處的切線方程;
(2)若在y軸的左側(cè),函數(shù)的圖象恒在的導(dǎo)函數(shù)圖象的上方,求k的取值范圍;
(3)當(dāng)k≤-l時,求函數(shù)在[k,l]上的最小值m。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

經(jīng)銷商用一輛型卡車將某種水果運送(滿載)到相距400km的水果批發(fā)市場.據(jù)測算,型卡車滿載行駛時,每100km所消耗的燃油量(單位:)與速度(單位:km/h)的關(guān)系近似地滿足,除燃油費外,人工工資、車損等其他費用平均每小時300元.已知燃油價格為7.5元/L.
(1)設(shè)運送這車水果的費用為(元)(不計返程費用),將表示成速度的函數(shù)關(guān)系式;
(2)卡車該以怎樣的速度行駛,才能使運送這車水果的費用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時,求函數(shù)單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間[1,2]上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)的導(dǎo)數(shù)為,,對于任意實數(shù),有,則的最小值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),在定義域上表示的曲線過原點,且在處的切線斜率均為.有以下命題:
是奇函數(shù);②若內(nèi)遞減,則的最大值為4;③的最大值為,最小值為,則; ④若對恒成立,則的最大值為2.其中正確命題的序號為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對任意的都成立,則的最小值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是定義在上的兩個可導(dǎo)函數(shù),若,滿足,則滿足(    )
A.B.為常數(shù)函數(shù)
C.D.為常數(shù)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若函數(shù)f(x)=ax3x2x-5在(-∞,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案