如圖,點P(0,-1)是橢圓C1:=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑.l1,l2是過點P且互相垂直的兩條直線,其中l1交圓C2于A,B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時直線l1的方程.
(1)+y2=1(2)y=±x-1.
【解析】(1)由題意得所以橢圓C1的方程為+y2=1.
(2)設(shè)A(x1,y1),B(x2,y2),D(x0,y0).
由題意知直線l1的斜率存在,不妨設(shè)其為k,
則直線l1的方程為y=kx-1.又圓C2:x2+y2=4,
故點O到直線l1的距離d=,所以|AB|=2 =2 .
又l2⊥l1,故直線l2的方程為x+ky+k=0.由
消去y,整理得(4+k2)x2+8kx=0,
故x0=-.所以|PD|=.
設(shè)△ABD的面積為S,則S=|AB|·|PD|=,
所以S=≤,
當且僅當k=±時取等號.所以所求直線l1的方程為y=±x-1.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用21練習(xí)卷(解析版) 題型:填空題
利用計算機產(chǎn)生0~1之間的均勻隨機數(shù)a,則事件“3a-1>0”發(fā)生的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用18練習(xí)卷(解析版) 題型:解答題
已知多項式f(n)=n5+n4+n3-n.
(1)求f(-1)及f(2)的值;
(2)試探求對一切整數(shù)n,f(n)是否一定是整數(shù)?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用15練習(xí)卷(解析版) 題型:解答題
已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sin θ.
(1)把C1的參數(shù)方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用14練習(xí)卷(解析版) 題型:解答題
已知a,b,c均為正數(shù),證明:a2+b2+c2+2≥6,并確定a,b,c為何值時,等號成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用13練習(xí)卷(解析版) 題型:填空題
如圖,在平面直角坐標系xOy中,F1,F2分別為橢圓=1(a>b>0)的左、右焦點,B,C分別為橢圓的上、下頂點,直線BF2與橢圓的另一個交點為D,若cos∠F1BF2=,則直線CD的斜率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用12練習(xí)卷(解析版) 題型:解答題
在平面直角坐標系xOy中,已知對于任意實數(shù)k,直線(k+1)x+(k-)y-(3k+)=0恒過定點F.設(shè)橢圓C的中心在原點,一個焦點為F,且橢圓C上的點到F的最大距離為2+.
(1)求橢圓C的方程;
(2)設(shè)(m,n)是橢圓C上的任意一點,圓O:x2+y2=r2(r>0)與橢圓C有4個相異公共點,試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用11練習(xí)卷(解析版) 題型:填空題
已知圓(x-a)2+(y-b)2=r2的圓心為拋物線y2=4x的焦點,且與直線3x+4y+2=0相切,則該圓的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試選擇填空限時訓(xùn)練3練習(xí)卷(解析版) 題型:選擇題
函數(shù)f(x)=ln(x2+1)的圖象大致是( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com