已知以為圓心、半徑為的一個(gè)圓內(nèi)有一個(gè)定點(diǎn),如果圓過定點(diǎn)且與圓相切,求圓心的軌跡。
點(diǎn)的軌跡是以為焦點(diǎn)的橢圓
,設(shè)切點(diǎn)為,則由題意,得,又∵,∴點(diǎn)的軌跡是以為焦點(diǎn)的橢圓。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題




A.16B.C.8D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面直角坐標(biāo)系中,為兩等腰直角三角形,,C(a,0)(a>0).設(shè)的外接圓圓心分別為,

(Ⅰ)若⊙M與直線CD相切,求直線CD的方程;
(Ⅱ)若直線AB截⊙N所得弦長為4,求⊙N的標(biāo)準(zhǔn)方程;
(Ⅲ)是否存在這樣的⊙N,使得⊙N上有且只有三個(gè)點(diǎn)到直線AB的距離為,若存在,求此時(shí)⊙N的標(biāo)準(zhǔn)方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1的方程為,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn)。求雙曲線C2的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線與雙曲線的左支交于兩點(diǎn),另一直線過點(diǎn)的中點(diǎn),求直線軸上的截距的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的離心率為,且曲線過點(diǎn)
(1)求橢圓C的方程;(2)已知直線與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)不在圓內(nèi),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知A、B是過拋物線焦點(diǎn)F的直線與拋物線的交點(diǎn),O是坐標(biāo)原點(diǎn),滿足,,則的值為            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,直線L:2px+3y=p2。
⑴當(dāng)p為何值時(shí),焦點(diǎn)F到直線L的距離最大;
⑵在第⑴題下,又若拋物線與直線L相交于A、B兩點(diǎn)。求△ABF的面積。

查看答案和解析>>

同步練習(xí)冊答案