4.設(shè)全集U={x|ex>1},函數(shù)f(x)=$\frac{1}{{\sqrt{x-1}}}$的定義域?yàn)锳,則∁UA為( 。
A.(0,1]B.(0,1)C.(1,+∞)D.[1,+∞)

分析 解不等式求出全集U,求函數(shù)f(x)的定義域得出集合A,根據(jù)補(bǔ)集的定義寫(xiě)出∁UA.

解答 解:全集U={x|ex>1}={x|x>0},
函數(shù)f(x)=$\frac{1}{{\sqrt{x-1}}}$的定義域?yàn)锳={x|x-1>0}={x|x>1},
則∁UA={x|0<x≤1}=(0,1].
故選:A.

點(diǎn)評(píng) 本題考查了解不等式與補(bǔ)集的定義和應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.己知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>1)的左焦點(diǎn)F與拋物線y2=-4x的焦點(diǎn)重合,直線x-y+$\frac{\sqrt{2}}{2}$=0與以原點(diǎn)O為圓心,以橢圓的離心率e為半徑的圓相切.
(I )求該橢圓C的方程
(II)設(shè)點(diǎn)P坐標(biāo)為(-$\frac{1}{8}$,0),若|PA|=|PB|,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.執(zhí)行如圖所示程序框圖,若輸入的k=4,則輸出的s=( 。
A.$\frac{1}{3}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,點(diǎn)$P(\sqrt{2},2)$在橢圓上.
(1)求橢圓C的方程;
(2)過(guò)橢圓上的焦點(diǎn)F作兩條相互垂直的弦AC,BD,求|AC|+|BD|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)點(diǎn)O、P、Q是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與拋物線y2=4x的交點(diǎn),O為坐標(biāo)原點(diǎn),若△OPQ的面積為2,則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知過(guò)拋物線E:x2=2py(p>0)焦點(diǎn)F且傾斜角的60°直線l與拋物線E交于點(diǎn)M,N,△OMN的面積為4.
(Ⅰ)求拋物線E的方程;
(Ⅱ)設(shè)P是直線y=-2上的一個(gè)動(dòng)點(diǎn),過(guò)P作拋物線E的切線,切點(diǎn)分別為A、B,直線AB與直線OP、y軸的交點(diǎn)分別為Q、R,點(diǎn)C、D是以R為圓心、RQ為半徑的圓上任意兩點(diǎn),求∠CPD最大時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,且a3=5,S6=42,則S9=117.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(-4,x),$\overrightarrow$=(1,2),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,正四面體ABCD中,E、F分別是棱BC和AD的中點(diǎn),則直線AE和CF所成的角的余弦值為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案