分析 (1)直接由數(shù)列的前n項和求得數(shù)列前3項;
(2)由an=Sn-Sn-1求得n≥2時的通項公式,驗證首項后得答案.
解答 解:解:(1)由Sn=5n2+3n,得a1=S1=8,${a}_{2}={S}_{2}-{a}_{1}=5×{2}^{2}+3×2-8=18$,
${a}_{3}={S}_{3}-{S}_{2}=5×{3}^{2}+3×3-(5×{2}^{2}+3×2)$=54-26=28;
(2)當n≥2時,${a}_{n}={S}_{n}-{S}_{n-1}=5{n}^{2}+3n-[5(n-1)^{2}+3(n-1)]$=10n-2.
驗證a1=8適合上式,
∴an=10n-2.
點評 本題考查數(shù)列遞推式,訓練了由數(shù)列的前n項和求數(shù)列的通項公式,是基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 25° | B. | 115° | C. | 65° | D. | 155° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | 6 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若p∨q為真命題,則p∧q為真命題 | |
B. | “a>0,b>0”是“$\frac{a}$+$\frac{a}$≥2”的充分必要條件 | |
C. | 命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0” | |
D. | 命題p:?x0∈R,使得x02+x0-1<0,則¬p:?x∈R,使得x2+x-1≥0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{(n+1)^{2}}$ | B. | $\frac{2}{n(n+1)}$ | C. | $\frac{2}{{2}^{n}-1}$ | D. | $\frac{2}{2n-1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com