【題目】設(shè)函數(shù)是定義在上的偶函數(shù), 為其導(dǎo)函數(shù),當(dāng)時(shí), ,且,則不等式的解集為( )

A. B.

C. D.

【答案】C

【解析】設(shè)g(x)=xf(x),則恒成立

∴函數(shù)g(x)在區(qū)間(0,+∞)上是增函數(shù),

∵f(x)是定義在R上的偶函數(shù),∴g(x)=xf(x)R上的奇函數(shù),

∴函數(shù)g(x)在區(qū)間(∞,0)上是增函數(shù),

∵f(1)=0,∴f(1)=0; g(1)=0,g(1)=0

∴xf(x)>0化為g(x)>0,

當(dāng)x>0時(shí),不等式f(x)>0等價(jià)于g(x)>0,g(x)>g(1),即x>1;

當(dāng)x<0時(shí),不等式f(x)>0等價(jià)于g(x)<0,g(x)<g(1),即x<1.

故所求的解集為(∞,1)∪(1,+∞).

本題選擇C選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在探究實(shí)系數(shù)一元二次方程的根與系數(shù)的關(guān)系時(shí),可按下述方法進(jìn)行:

設(shè)實(shí)系數(shù)一元二次方程……①

在復(fù)數(shù)集內(nèi)的根為 ,則方程①可變形為,

展開(kāi)得.……②

比較①②可以得到:

類(lèi)比上述方法,設(shè)實(shí)系數(shù)一元次方程)在復(fù)數(shù)集內(nèi)的根為, ,…, ,則這個(gè)根的積 __________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次反恐演習(xí)中,我方三架武裝直升機(jī)分別從不同方位對(duì)同一目標(biāo)發(fā)動(dòng)攻擊(各發(fā)射一枚導(dǎo)彈),由于天氣原因,三枚導(dǎo)彈命中目標(biāo)的概率分別為09,09,08,若至少有兩枚導(dǎo)彈命中目標(biāo)方可將其摧毀,則目標(biāo)被摧毀的概率為( )

A. 0998 B. 0046 C. 0002 D. 0954

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司在迎新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲、乙兩個(gè)抽獎(jiǎng)方案供員工選擇;

方案甲:?jiǎn)T工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率為.第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束.若中獎(jiǎng),則通過(guò)拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng),規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),獲得獎(jiǎng)金1000元;若未中獎(jiǎng),則所獲獎(jiǎng)金為0元.

方案乙:?jiǎn)T工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為,每次中獎(jiǎng)均可獲獎(jiǎng)金400元.

(1)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金(元)的分布列;

(2)某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),試比較哪個(gè)方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

)當(dāng)時(shí),函數(shù)上的最大值為,若存在,使得成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)若,求函數(shù)的極值.

(2)若有唯一的零點(diǎn),求的取值范圍.

(3)若,設(shè),求證: 內(nèi)有唯一的零點(diǎn),且對(duì)(2)中的,滿(mǎn)足.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求的取值范圍;

(3)在(2)的條件下,設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】讀下列所給程序依據(jù)程序畫(huà)出程序框圖,并說(shuō)明其功能.

INPUT “輸入三個(gè)正數(shù)a,bc;ab,c

IF ab>c AND ac>b AND bc>a THEN

p(abc)/2

SSQR(p*(pa)*(pb)*(pc))

PRINT “三角形的面積SS

ELSE

PRINT “構(gòu)不成三角形”

END IF

END

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))的圖象與直線(xiàn)相切,當(dāng)恰有一個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案