【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的22列聯(lián)表:

總計(jì)

愛好

40

20

60

不愛好

20

30

50

總計(jì)

60

50

110

算得,.

附表:

0.050

0.010

0.001

3.841

6.635

10.828

參照附表,得到的正確結(jié)論是(

A.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān);

B.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān);

C.99%以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān);

D.99%以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)

【答案】C

【解析】

根據(jù)給定的的值,結(jié)合附表,即可得到結(jié)論.

所以有99%以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān).

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列三個(gè)命題:

①函數(shù)的單調(diào)增區(qū)間是

②經(jīng)過任意兩點(diǎn)的直線,都可以用方程來表示;

③命題:“ ”的否定是“,”,

其中正確命題的個(gè)數(shù)有( )個(gè)

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取名中學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.

組號(hào)

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請(qǐng)先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;

(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,使得為真命題,求的取值范圍;

2)若不等式的解集為D,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fxgx)分別是定義在R上的偶函數(shù)和奇函數(shù),且fx+gx=23x

1)證明:fx-gx=23-x,并求函數(shù)fx),gx)的解析式;

2)解關(guān)于x不等式:gx2+2x+gx-4)>0;

3)若對(duì)任意xR,不等式f2x)≥mfx-4恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下的對(duì)應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70

1)畫出散點(diǎn)圖;

2)求y關(guān)于x的線性回歸方程.

3)如果廣告費(fèi)支出為一千萬元,預(yù)測(cè)銷售額大約為多少百萬元?

參考公式用最小二乘法求線性回歸方程系數(shù)公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)下列命題:

①直線與函數(shù)的圖象相交,則相鄰兩交點(diǎn)的距離為;

②點(diǎn) 是函數(shù)的圖象的一個(gè)對(duì)稱中心;

③函數(shù)上單調(diào)遞減,則的取值范圍為

④函數(shù)對(duì)R恒成立,則.

其中所有正確命題的序號(hào)為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fxk>0)

(1)若fx)>m的解集為{x|x<-3,或x>-2},求不等式5mx2+kx+3>0的解集;

(2)若存在x>3,使得fx)>1成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案