橢圓與雙曲線有公共的焦點(diǎn),過(guò)橢圓E的右頂點(diǎn)作任意直線l,設(shè)直線l交拋物線于M、N兩點(diǎn),且.
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A、關(guān)于x軸的對(duì)稱點(diǎn)為Q,線段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線AD與橢圓E的另一個(gè)交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.
(1) ;(2) .證明見解析.
【解析】
試題分析:(1)設(shè)點(diǎn),
設(shè)直線 ,代入并整理得
利用
解得,再由求得.
(2) 首先判斷得出.可通過(guò)證明或,達(dá)到目的.
設(shè),得到,且
將直線的方程代入橢圓的方程并整理得到由得證.
試題解析:(1)設(shè)點(diǎn),
設(shè)直線 ,代入并整理得
所以 2分
故有
解得 5分
又橢圓與雙曲線有公共的焦點(diǎn),故有
所以橢圓的方程為 . 7分
(2)
證明:設(shè),則,且
將直線的方程代入橢圓的方程并整理得
9分
由題意可知此方程必有一根
,
所以 12分
故有 , 即 13分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程,平面向量的坐標(biāo)運(yùn)算,直線與拋物線的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)中心在原點(diǎn)的橢圓與雙曲線有公共的焦點(diǎn),且它們的離心率互為倒數(shù),求該橢圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012年蘇教版高中數(shù)學(xué)選修2-1 2.3雙曲線練習(xí)卷(解析版) 題型:填空題
設(shè)中心在原點(diǎn)的橢圓與雙曲線有公共的焦點(diǎn),且它們的離心率互為倒數(shù),則該橢圓的方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012年蘇教版高中數(shù)學(xué)選修1-1 2.5圓錐曲線與方程練習(xí)卷(解析版) 題型:選擇題
若橢圓與雙曲線有公共的焦點(diǎn),其交點(diǎn)為且∠,則△的面積是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省寧波萬(wàn)里國(guó)際學(xué)校高二下期中理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知橢圓與雙曲線有公共的焦點(diǎn),的一條漸近線與以的長(zhǎng)軸為直徑的圓相交于A,B兩點(diǎn),若恰好將線段AB三等分,則=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com