【題目】在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求直線和曲線的極坐標(biāo)方程;

2)已知射線與曲線交于兩點(diǎn),射線與直線交于點(diǎn),若的面積為1,求的值和弦長

【答案】1,;(2 .

【解析】

1)先把直線和曲線的參數(shù)方程化成普通方程,再化成極坐標(biāo)方程;

2)聯(lián)立極坐標(biāo)方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得

1)直線的參數(shù)方程是為參數(shù)),

消去參數(shù)得直角坐標(biāo)方程為:

轉(zhuǎn)換為極坐標(biāo)方程為:,即

曲線的參數(shù)方程是為參數(shù)),

轉(zhuǎn)換為直角坐標(biāo)方程為:

化為一般式得

化為極坐標(biāo)方程為:

2)由于,得,

所以,

所以

由于,所以,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn).

1)求橢圓C的方程;

2)設(shè)過點(diǎn)的直線l與橢圓C交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)為,點(diǎn)在橢圓上,且點(diǎn)關(guān)于原點(diǎn)對稱,直線的斜率的乘積為.

(1)求橢圓的方程;

(2)已知直線經(jīng)過點(diǎn),且與橢圓交于不同的兩點(diǎn),若,判斷直線的斜率是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)設(shè)

若函數(shù)處的切線過點(diǎn),求的值;

當(dāng)時(shí),若函數(shù)上沒有零點(diǎn),求的取值范圍;

2)設(shè)函數(shù),且),求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100個(gè)零件作為樣本,測量其直徑后,整理得到如表:

直徑/

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計(jì)

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.

1)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的頻率):①;②;③.評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備性能等級(jí)為甲;僅滿足其中兩個(gè),則設(shè)備性能等級(jí)為乙;若僅滿足其中一個(gè),則設(shè)備性能等級(jí)為丙;若全部不滿足,則設(shè)備性能等級(jí)為。嚺袛嘣O(shè)備的性能等級(jí).

2)將直徑小于等于或直徑大于的零件認(rèn)為是次品.

i)從設(shè)備的生產(chǎn)流水線上任意抽取2個(gè)零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望;

ii)從樣本中任意抽取2個(gè)零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且asinB=bsin(A+).

(1)求A;

(2)若b,a,c成等差數(shù)列,△ABC的面積為2,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的各棱長均為2,側(cè)面 底面,側(cè)棱與底面所成的角為

(Ⅰ)求直線與底面所成的角;

(Ⅱ)在線段上是否存在點(diǎn),使得平面平面?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學(xué)家洛薩克拉茨在1950年世界數(shù)學(xué)家大會(huì)上公布的一個(gè)猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過6次運(yùn)算后得到1,則的值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下關(guān)于圓錐曲線的命題中:

①雙曲線與橢圓有相同焦點(diǎn);

②以拋物線的焦點(diǎn)弦(過焦點(diǎn)的直線截拋物線所得的線段)為直徑的圓與拋物線的準(zhǔn)線是相切的;

③設(shè)、為兩個(gè)定點(diǎn),為常數(shù),若,則動(dòng)點(diǎn)的軌跡為雙曲線;

④過拋物線的焦點(diǎn)作直線與拋物線相交于,則使它們的橫坐標(biāo)之和等于5的直線有且只有兩條;

以上命題正確的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案