αβ為兩個不重合的平面,給出下列四個命題:

α內(nèi)的兩條相交直線分別平行于β內(nèi)的兩條直線,則α平行于β;α外一條直線lα內(nèi)的一條直線平行,則lα平行;αβ相交于直線l,若α內(nèi)有一條直線垂直于l,則αβ垂直;直線lα垂直的充分必要條件是lα內(nèi)的兩條直線垂直.其中為真命題的是________(寫出所有真命題的序號)

 

①②

【解析】α內(nèi)兩條相交直線分別平行于平面β,則兩條相交直線確定的平面α平行于平面β,故為真命題;由線面平行的判定定理知,為真命題;對于,如圖,αβl,a?α,al,但不一定有αβ,故為假命題;

對于,直線l與平面α垂直的充分必要條件是lα內(nèi)的兩條相交直線垂直,故為假命題.

綜上所述,真命題的序號為①②.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練18練習卷(解析版) 題型:解答題

學校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球,2個黑球,乙箱子里裝有1個白球,2個黑球,這些球除顏色外完全相同.每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎(每次游戲結(jié)束后將球放回原箱)

(1)求在1次游戲中:

摸出3個白球的概率;獲獎的概率.

(2)求在兩次游戲中獲獎次數(shù)X的分布列及數(shù)學期望E(X)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練15練習卷(解析版) 題型:選擇題

已知雙曲線1(a>0,b>0)的一個焦點與拋物線y24x的焦點重合,且雙曲線的離心率等于,則該雙曲線的方程為(  )

A5x2y21 B.1 C.1 D5x2y21

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練13練習卷(解析版) 題型:填空題

如圖,在直三棱柱ABC-A1B1C1中,ACB90°AA12,ACBC1,則異面直線A1BAC所成角的余弦值是________

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練12練習卷(解析版) 題型:解答題

如圖,在四棱臺ABCD-A1B1C1D1中,D1D平面ABCD,底面ABCD是平行四邊形,AB2AD,ADA1B1,BAD60°.

(1)證明:AA1BD;

(2)證明:CC1平面A1BD.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練12練習卷(解析版) 題型:選擇題

已知兩條直線a,b與兩個平面α,β,bα,則下列命題中正確的是(  )

aα,則ab;ab,則aα;bβ,則αβ;αβ,則bβ.

A①③ B②④ C①④ D②③

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練11練習卷(解析版) 題型:選擇題

在具有如圖所示的正視圖和俯視圖的幾何體中,體積最大的幾何體的表面積為(  )

A13 B73 C.π D14

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:解答題

已知直線lyx,圓Ox2y25,橢圓E1(a>b>0)的離心率e,直線l被圓O截得的弦長與橢圓的短軸長相等.

(1)求橢圓E的方程;

(2)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷3練習卷(解析版) 題型:選擇題

已知實數(shù)ab,c,d成等比數(shù)列,且函數(shù)yln(x2)x,當xb時取到極大值c,則ad等于(  )

A1 B0 C.-1 D2

 

查看答案和解析>>

同步練習冊答案