的值.

【解析】利用對數(shù)函數(shù)的運算性質(zhì)可知,

=

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2011-2012學年山東省高三下學期模擬預測理科數(shù)學試卷(解析版) 題型:解答題

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當時,求證:;

(Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當a=1時,底面ABCD為正方形,

又因為,………………2分

,得證。

第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時,存在點Q使得

當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

由此知道a=2,  設平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當時,底面ABCD為正方形,

又因為,………………3分

(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時,存在點Q使得

當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

設平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆安徽省高一下學期期中考試數(shù)學試卷(解析版) 題型:解答題

是直角坐標系中,x軸、y軸正方向上的單位向量,設  

(1)若(,求.

(2)若時,求的夾角的余弦值.

(3)是否存在實數(shù),使,若存在求出的值,不存在說明理由.

【解析】第一問中,利用向量的數(shù)量積為0,解得為m=-2

第二問中,利用時,結合向量的夾角的余弦值公式解得

第三問中,利用向量共線,求解得到m不存在。

(1)因為設是直角坐標系中,x軸、y軸正方向上的單位向量,設  

(2)因為

;

(3)假設存在實數(shù),使,則有

因此不存在;

 

查看答案和解析>>

同步練習冊答案