精英家教網 > 高中數學 > 題目詳情
3.已知函數g(x)=$\frac{1}{xsinθ}$+lnx在[1,+∞)上為增函數,且θ∈(0,π),f(x)=mx-$\frac{m-1}{x}$-lnx(m∈R).
(1)求θ的值;
(2)設h(x)=$\frac{2e}{x}$,若在[1,e]上至少存在一個x0,使得f(x0)-g(x0)>h(x0)成立,求m的取值范圍.

分析 (1)由題意可知$\frac{sinθ•x-1}{sinθ{•x}^{2}}$≥0.由θ∈(0,π),知sinθ>0.再由sinθ≥1,結合θ∈(0,π),可以得到θ的值.
(2)構造F(x)=f(x)-g(x)-h(x),F(x)=mx-$\frac{m}{x}$-2lnx-$\frac{2e}{x}$,由此入手可以得到m的取值范圍是( $\frac{4e}{{e}^{2}-1}$,+∞)

解答 解:(1)由題意,g′(x)=-$\frac{1}{sinθ{•x}^{2}}$+$\frac{1}{x}$≥0在[1,+∞)上恒成立,即$\frac{sinθ•x-1}{sinθ{•x}^{2}}$≥0.
∵θ∈(0,π),∴sinθ>0.故sinθ•x-1≥0在[1,+∞)上恒成立,只須sinθ•1-1≥0,
即sinθ≥1,只有sinθ=1.結合θ∈(0,π),得θ=$\frac{π}{2}$,
(2)構造F(x)=f(x)-g(x)-h(x),F(x)=mx-$\frac{m}{x}$-2lnx-$\frac{2e}{x}$,
當m≤0時,x∈[1,e],mx-$\frac{m}{x}$≤0,-2lnx-$\frac{2e}{x}$<0,
所以在[1,e]上不存在一個x0,使得f(x0)-g(x0)>h(x0)成立.
當m>0時,F′(x)=$\frac{{mx}^{2}-2x+m+2e}{{x}^{2}}$,
因為x∈[1,e],所以2e-2x≥0,mx2+m>0,
所以(F(x))'>0在x∈[1,e]恒成立.
故F(x)在[1,e]上單調遞增,F(x)max=F(e)=me-$\frac{m}{e}$-4,只要me-$\frac{m}{e}$-4>0,
解得:m>$\frac{4e}{{e}^{2}-1}$,
故m的取值范圍是:($\frac{4e}{{e}^{2}-1}$,+∞).

點評 本題考查函數的性質和應用,解題時要認真審題,注意挖掘隱含條件,仔細解答.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

13.如圖,在長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,則AC1與平面A1B1C1D1所成的角的正弦值為( 。
A.$\frac{1}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{2}{3}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.在菱形ABCD中,AB=2,∠DAB=60°,E為CD的中點,則$\overrightarrow{AD}$•$\overrightarrow{AE}$的值是5.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知橢圓$\frac{x^2}{5}+\frac{y^2}{m}=1$的離心率為$\frac{{\sqrt{10}}}{5}$,則m的值為( 。
A.3B.$\frac{{5\sqrt{15}}}{3}$或$\sqrt{15}$C.$\sqrt{5}$D.$\frac{25}{3}$或3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.某班級50名學生的考試分數x分布在區(qū)間[50,100)內,設分數x的分布頻率是f(x)且f(x)=$\left\{\begin{array}{l}{\frac{n}{10}-0.4,10n≤x<10(n+1),n=5,6,7}\\{-\frac{n}{5}+b,10n≤x<10(n+1),n=8,9}\end{array}\right.$,考試成績采用“5分制”,規(guī)定:考試分數在[50,60)內的成績記為1分,考試分數在[60,70)內的成績記為2分,考試分數在[70,80)內的成績記為3分,考試分數在[80,90)內的成績記為4分,考試分數在[90,100)內的成績記為5分.用分層抽樣的方法,現在從成績在1分,2分及3分的人中用分層抽樣隨機抽出6人,再從這6人中抽出3人,記這3人的成績之和為ξ(將頻率視為概率).
(1)求b的值,并估計班級的考試平均分數;
(2)求P(ξ=7);
(3)求ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.數列{an}滿足$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=d(n∈N*,d為常數),則稱數列{an}為調和數列,記數列{$\frac{1}{{x}_{n}}$}為調和數列,且x1+x2+…+x22=77,則x11+x12=7.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知函數f(x)=x2+ax+4
(1)若f(x)在[1,+∞)上遞增,求實數a的范圍;
(2)求f(x)在[-2,1]上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.如圖,正三棱柱ABC-A1B1C1的各棱長均相等,D為AA1的中點,M,N分別是線段BB1和線段CC1上的動點(含端點),且滿足BM=C1N,當M,N運動時,下列結論中正確的序號為②③④.
①△DMN可能是直角三角形;②三棱錐A1-DMN的體積為定值;③平面DMN⊥平面BCC1B1;④平面DMN與平面ABC所成的銳二面角范圍為(0,$\frac{π}{4}$].

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.如圖,四邊形ABCD是邊長為2的菱形,∠ABC=60°,PA⊥平面ABCD,E為PC中點.求證:平面BED⊥平面ABCD.

查看答案和解析>>

同步練習冊答案