8.已知集合A={x|x≥-1},則正確的是( 。
A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A

分析 根據(jù)元素與集合的關系和集合與集合的關系判斷即可.

解答 解:對于A,元素與集合的關系不能用“⊆”;
對于B和C,集合與集合間的關系不能用“∈”;
對于D,正確.
故選D.

點評 本題主要元素與集合,集合與集合間的關系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=sin(x+$\frac{π}{6}$),其中x∈[-$\frac{π}{3}$,a],若f(x)的值域是[-$\frac{1}{2}$,1],則cosα的取值范圍是(  )
A.$[\frac{1}{2},1)$B.$[{-1,\frac{1}{2}}]$C.$[{0,\frac{1}{2}}]$D.$[{-\frac{1}{2},0}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.方程ax2+ay2-4(a-1)x+4y=0表示圓,則實數(shù)a的取值范圍(  )
A.RB.(-∞,0)∪(0,+∞)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=2cos(x-$\frac{π}{3}$)($\frac{π}{6}$≤x≤$\frac{2}{3}$π)的最小值是(  )
A.1B.-$\sqrt{3}$C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(x,$\sqrt{3}$),$\overrightarrow$=(3,-$\sqrt{3}$),若$\overrightarrow{a}$⊥$\overrightarrow$,則|${\overrightarrow a}$|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.同時擲兩枚骰子,所得點數(shù)之和為3的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{18}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如圖,勘探隊員朝一座山行進,在前后兩處A,B觀察塔尖P及山頂Q.已知P,Q,A,B,O在同一平面且與水平面垂直.設塔高PQ=h,山高QO=H,AB=m,BO=n,仰角∠PAO=α,仰角∠QAO=β,仰角∠PBO=θ.試用m,α,β,θ表示h,h=$\frac{msinα}{sin(θ-α)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.全集U=R,若集合A={x|3≤x<10},B={x|1<x-1≤6},則
(1)求A∩B,A∪B;
(2)若集合C={x|x>a},滿足C∪A=C時,求a的取值范圍.(結果用區(qū)間或集合表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知M={x|-2≤x≤5},N={x|a+1≤x≤2a-1},
(1)若a=$\frac{7}{2}$,求M∪N; (∁RM)∩N;
(2)若M?N,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案