若曲線f(x,y)=0上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0的“自公切線”,下列方程:
①x2-y2=1
②x2-|x-1|-y=0
③xcosx-y=0
④|x|-
4-y2
+1=0
其中所對(duì)應(yīng)的曲線中存在“自公切線”的有( 。
A、①②B、②③C、①④D、③④
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:綜合題,新定義,函數(shù)的性質(zhì)及應(yīng)用
分析:通過(guò)畫(huà)出函數(shù)圖象,觀察其圖象是否滿足在其上圖象上是否存在兩個(gè)不同點(diǎn)處的切線重合,從而確定是否存在自公切線,即可得到結(jié)論.
解答: 解:①x2-y2=1 是一個(gè)等軸雙曲線,沒(méi)有自公切線;
②x2-|x-1|-y=0,由兩圓相交,可知公切線,滿足題意,故有自公切線;
③y=xcosx 的圖象過(guò)(2π,2π ),(4π,4π),圖象在這兩點(diǎn)的切線都是y=x,故此函數(shù)有自公切線;
④對(duì)于方程|x|-
4-y2
+1=0,其表示的圖形為圖中實(shí)線部分,不滿足要求,故不存在.
故選:B.
點(diǎn)評(píng):正確理解新定義“自公切線”,正確畫(huà)出函數(shù)的圖象、數(shù)形結(jié)合的思想方法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(sin25°,cos25°),
b
=(cos25°,sin25°),則
a
b
的夾角是( 。
A、50°B、40°
C、90°D、0°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等式x2-4
3
xcosθ+2<0與2x2+4xsinθ+1<0的解集,分別是(a,b)和(
1
b
,
1
a
),且θ∈(
π
2
,π),則θ的值是(  )
A、
5
6
π
B、
2
3
π
C、
3
4
π
D、
7
12
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題r:如果
x-2
+(y+1)2=0,則x=2且y=-1.若命題r的否命題為p,命題r的否定為q,則( 。
A、p真q假B、p假q真
C、p,q都真D、p,q都假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線L經(jīng)過(guò)A(1,1),B(2,m2)兩點(diǎn),則直線L傾斜角的取值范圍是( 。
A、[0°,180°)
B、[0°,45°)
C、[0°,90°)∪[135°,180°)
D、[135°,180°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要得到函數(shù)y=
2
cos(x-
π
6
)的圖象,可把函數(shù)y=sinx+cosx的圖象(  )
A、向左平移
12
個(gè)單位長(zhǎng)度
B、向右平移
12
個(gè)單位長(zhǎng)度
C、向左平移
π
12
個(gè)單位長(zhǎng)度
D、向右平移
π
12
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={1,2,3,4},集合A={1,2,x2}與B={1,4}是它的子集,
(1)求∁UB;
(2)若A∩B=B,求x的值;
(3)若A∪B=U,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的底面是菱形,PA⊥底面ABCD,∠BAD=120°,E為PC上任意一點(diǎn).
(1)求證:面BED⊥面PAC;
(2)若E是PC中點(diǎn),AB=PA=a,求二面角E-CD-A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}中,0<a1<a2,Sn是數(shù)列{an}的前n項(xiàng)和,求證:當(dāng)n≥3時(shí),Sn
n(a1+an)
2

查看答案和解析>>

同步練習(xí)冊(cè)答案