【題目】從全校參加數(shù)學(xué)競(jìng)賽的學(xué)生的試卷中,抽取一個(gè)樣本,考察競(jìng)賽的成績(jī)分布,將樣本分成組,繪成頻率分布直方圖,圖中從左到右各小組的長(zhǎng)方形的高之比為,最右邊一組的頻數(shù)是.

1)成績(jī)落在哪個(gè)范圍的人數(shù)最多?并求出該小組的頻數(shù)、頻率;

2)估計(jì)這次競(jìng)賽中,成績(jī)高于分的學(xué)生占總?cè)藬?shù)的百分百.

【答案】1)頻數(shù)18,頻率2

【解析】

試題(1)圖中矩形面積最大的一組就是人數(shù)最多的組,由此找出最高的矩形,在[70.5,80.5)這一組,再用公式求出其頻數(shù)、頻率;(2)用樣本估計(jì)總體:在樣本中算出四個(gè)組占總數(shù)的百分比,就可以估計(jì)出成績(jī)高于60分的學(xué)生占總?cè)藬?shù)的百分比

試題解析:(1)成績(jī)落在內(nèi)人數(shù)最多

頻數(shù)為,頻率為

2)成績(jī)高于分的學(xué)生占總?cè)藬?shù)的

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,,,,的中點(diǎn).

1)求證:BM∥平面ADEF

2)求證:平面BDE⊥平面BEC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查。

I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。

II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,

1)列出所有可能的抽取結(jié)果;

2)求抽取的2所學(xué)校均為小學(xué)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的離心率,拋物線的焦點(diǎn)恰好是橢圓的右焦點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)作兩條斜率都存在的直線,設(shè)與橢圓交于兩點(diǎn),與橢圓交于兩點(diǎn),若的等比中項(xiàng),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),試判斷零點(diǎn)的個(gè)數(shù);

(Ⅲ)當(dāng)時(shí),若對(duì),都有)成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60)[60,70),[70,80),[80,90)[90,100]

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;

(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績(jī)?cè)?/span>[50,90)之外的人數(shù).

分?jǐn)?shù)段

[50,60)

[60,70)

[70,80)

[80,90)

xy

11

21

34

45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是正方形, ,點(diǎn)E在棱PB上.

(Ⅰ)求證:平面;

(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, , .

(1)討論函數(shù)的單調(diào)性;

(2)記,設(shè), 為函數(shù)圖象上的兩點(diǎn),且.

(i)當(dāng)時(shí),若 處的切線相互垂直,求證: ;

(ii)若在點(diǎn), 處的切線重合,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)設(shè)

若函數(shù)處的切線過(guò)點(diǎn),求的值;

當(dāng)時(shí),若函數(shù)上沒(méi)有零點(diǎn),求的取值范圍;

2)設(shè)函數(shù),且),求證:當(dāng)時(shí),

查看答案和解析>>

同步練習(xí)冊(cè)答案