(本小題滿分13分)已知橢圓的中心在原點(diǎn),焦點(diǎn),軸上,經(jīng)過點(diǎn),,且拋物線的焦點(diǎn)為.
(1) 求橢圓的方程;
(2) 垂直于的直線與橢圓交于,兩點(diǎn),當(dāng)以為直徑的圓軸相切時(shí),求直線的方程和圓的方程.
(1)
(2),

試題分析:(1) 設(shè)橢圓的方程為,
則由橢圓經(jīng)過點(diǎn),,有,①
∵拋物線的焦點(diǎn)為, , ②
 ③,
由①、②、③得,
所以橢圓的方程為.                                       ……5分
(2) 依題意,直線斜率為1,
由此設(shè)直線的方程為,代入橢圓方程,得.
,得.
 =,=
的圓心為,即,
半徑,
當(dāng)圓軸相切時(shí),,即,
當(dāng)時(shí),直線方程為,此時(shí),,圓心為(2,1),半徑為2,圓的方程為;
同理,當(dāng)時(shí),直線方程為,
的方程為.                                 ……13分
點(diǎn)評(píng):每年高考圓錐曲線問題都出現(xiàn)在壓軸題的位置上,難度一般較大,要充分利用數(shù)形結(jié)合數(shù)學(xué)思想方法,盡可能的尋求簡單方法,盡可能的減少運(yùn)算,另外思維一定要嚴(yán)謹(jǐn),運(yùn)算一定要準(zhǔn)確.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)橢圓的左、右焦點(diǎn)分別為,焦距為2,,過作垂直于橢圓長軸的弦長為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過的直線l交橢圓于兩點(diǎn).并判斷是否存在直線l使得的夾角為鈍角,若存在,求出l的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分) 如圖,是離心率為的橢圓,
()的左、右焦點(diǎn),直線將線段分成兩段,其長度之比為1 : 3.設(shè)上的兩個(gè)動(dòng)點(diǎn),線段的中點(diǎn)在直線上,線段的中垂線與交于兩點(diǎn).

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點(diǎn),使以為直徑的圓經(jīng)過點(diǎn),若存在,求出點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線過點(diǎn)
(I)求拋物線的方程;
(II)已知圓心在軸上的圓過點(diǎn),且圓在點(diǎn)的切線恰是拋物線在點(diǎn)的切線,求圓的方程;
(Ⅲ)如圖,點(diǎn)軸上一點(diǎn),點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),過點(diǎn)作一條直線與拋物線交于兩點(diǎn),若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線上一點(diǎn)到焦點(diǎn)的距離為1,則點(diǎn)的縱坐標(biāo)是  (    )
A.0B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線 的離心率為 ,且它的一條準(zhǔn)線與拋物
 的準(zhǔn)線重合,則此雙曲線的方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是x軸,拋物線上的點(diǎn)M(-3,m)到焦點(diǎn)的距離為5,求拋物線的方程和m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與曲線相切于點(diǎn),則的值為 (   )
A.-3B.9
C.-15 D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若過橢圓內(nèi)一點(diǎn)(2,1)的弦被該點(diǎn)平分,則該弦所在直線的方程是_______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案