分析 (1)求得拋物線的焦點(diǎn),可得直線AB的方程;
(2)由直線與拋物線消去y得3x2-20x+12=0,運(yùn)用韋達(dá)定理和拋物線的定義,即可得到所求值.
解答 解:(1)拋物線y2=8x的焦點(diǎn)F為(2,0),直線的斜率k=$\sqrt{3}$(2分)
代入點(diǎn)斜式方程得:y=$\sqrt{3}$(x-2),即 $\sqrt{3}x-y-2\sqrt{3}$=0 (4分)
(2)設(shè)直線與拋物線的交點(diǎn)為A(x1,y1),B(x2,y2),
由直線與拋物線消去y得3x2-20x+12=0(8分)
所以x1+x2=$\frac{20}{3}$,
由拋物線的定義可得,|AB|=x1+x2+p=$\frac{32}{3}$,
即直線被拋物線所截得的弦長(zhǎng)為$\frac{32}{3}$ (12分)
點(diǎn)評(píng) 本題考查拋物線的定義和方程、性質(zhì)的運(yùn)用,考查直線和拋物線的方程聯(lián)立,運(yùn)用韋達(dá)定理,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A(-1,+∞) | B. | (-1,2)∪(2,+∞) | C. | (-1,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向右平移$\frac{π}{3}$個(gè)單位 | B. | 向右平移$\frac{π}{6}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{12}$個(gè)單位 | D. | 向右平移$\frac{π}{12}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a≥e4+2e2 | B. | a>e2+2e | C. | a≥e2+2e | D. | a>e4+2e2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | P=Q | B. | Q?P | C. | P∩Q={2,4} | D. | P∩Q={(2,4)} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com