13.已知等差數(shù)列{an}滿足:a1+a5=4,則數(shù)列$\left\{{{2^{a_n}}}\right\}$的前5項(xiàng)之積為1024.(用數(shù)字作答)

分析 利用等差數(shù)列的性質(zhì)可知a3=2,進(jìn)而利用指數(shù)冪的運(yùn)算性質(zhì)即得結(jié)論.

解答 解:∵{an}是等差數(shù)列,且a1+a5=4,
∴a1+a5=2a3=4,解得a3=2.
∴${2}^{{a}_{1}}$•${2}^{{a}_{2}}$•${2}^{{a}_{3}}$•${2}^{{a}_{4}}$•${2}^{{a}_{5}}$
=${2}^{{a}_{1}+{a}_{2}+{a}_{3}+{a}_{4}+{a}_{5}}$
=${2}^{5{a}_{3}}$
=210
=1024,
故答案為:1024.

點(diǎn)評(píng) 本題考查等差數(shù)列的性質(zhì),考查指數(shù)冪的運(yùn)算性質(zhì),注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)化簡(jiǎn)f(α)=$\frac{{sin(\frac{π}{2}+α)+sin(-π-α)}}{{3cos(2π-α)+cos(\frac{3π}{2}-α)}}$; 
(2)若tanα=1,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列表示中不正確的是( 。
A.終邊在x軸上角的集合是{α|α=kπ,k∈Z}
B.終邊在y軸上角的集合是$\{α|α=\frac{π}{2}+kπ,k∈Z\}$
C.終邊在坐標(biāo)軸上角的集合是$\{α|α=k•\frac{π}{2},k∈Z\}$
D.終邊在直線y=x上角的集合是$\{α|α=\frac{π}{4}+2kπ,k∈Z\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖所示,坐標(biāo)紙上的每個(gè)單元格的邊長(zhǎng)為1,由下往上的六個(gè)點(diǎn):1,2,3,4,5,6的橫、縱坐標(biāo)分別對(duì)應(yīng)數(shù)列$\{{a_n}\}(n∈{N^*})$的前12項(xiàng),其中橫坐標(biāo)為奇數(shù)項(xiàng),縱坐標(biāo)為偶數(shù)項(xiàng),按如此規(guī)律下去,則a2017+a2018+a2019等于(  )
A.1002B.1004C.1007D.1009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$tan(α+β)=\frac{2}{5}$,$tanβ=\frac{1}{3}$,則$tan(α-\frac{π}{4})$的值為( 。
A.$\frac{8}{9}$B.-$\frac{8}{9}$C.$\frac{1}{17}$D.$\frac{16}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),公比為q,且滿足:a1=3,b1=1,b2+S2=12,S2=b2q.
(1)求an與bn
(2)設(shè)cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若數(shù)列{cn}是遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow$=(cosx,-1).
(1)當(dāng)$\overrightarrow{a}$∥$\overrightarrow$時(shí),求cos2x-sin2x的值;
(2)設(shè)函數(shù)f(x)=2($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$,已知在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若a=$\sqrt{3},b=2,sinB=\frac{{\sqrt{6}}}{3}$,求$f(x)+4cos(2A+\frac{π}{6})(x∈[0,\frac{π}{4}])$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}(2x-1)}}$,則f(x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.(-$\frac{1}{2}$,0)B.(-$\frac{1}{2}$,0]C.(-$\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=alnx-x+$\frac{1}{x}$,g(x)=x2+x-b.y=f(x)圖象恒過定點(diǎn)P,且P點(diǎn)既在y=g(x)圖象上,又在y=f(x)的導(dǎo)函數(shù)的圖象上.
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)h(x)=$\frac{f(x)}{g(x)}$,求證:當(dāng)x>0且x≠1時(shí),h(x)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案