【題目】(本小題滿分14分)

某公司經(jīng)銷某產(chǎn)品,第的銷售價(jià)格為為常數(shù))(元件),第天的銷售量為(件),且公司在第天該產(chǎn)品的銷售收入為元.

(1)求該公司在第天該產(chǎn)品的銷售收入是多少?

(2)天中該公司在哪一天該產(chǎn)品的銷售收入最大?最大收入為多少?

【答案】天的銷售收入為;天該公司的銷售收入最大,最大值為 元

【解析】本試題主要是考查了分段函數(shù)在實(shí)際生活中的運(yùn)用?疾榱送瑢W(xué)們分析問題和解決問題的能力。

(1)先設(shè)該公司第天的銷售收入為,

由已知,第天的銷售價(jià)格,銷售量

得到參數(shù)a的值,然后代入可知天的銷售收入

(2)由條件得函數(shù)為分段函數(shù)可知

然后分析各段函數(shù)的最值,來得到分段函數(shù)的最值問題。

(1)設(shè)該公司第天的銷售收入為

由已知,第天的銷售價(jià)格,銷售量

所以天的銷售收入,所以………………2

天的銷售收入 (元) ………………………………4

(2)由條件得…………7

當(dāng)時(shí),

(當(dāng)且僅當(dāng)時(shí)取等號(hào)),所以,當(dāng)時(shí)取最大值,……9

當(dāng)時(shí),,

所以,當(dāng)時(shí),取最大值為 …………………10分

當(dāng)時(shí),

(當(dāng)且僅當(dāng)時(shí)取等號(hào)),所以當(dāng)時(shí),取最大值. 12分

由于,所以天該農(nóng)戶的銷售收入最大

答:天的銷售收入為天該公司的銷售收入最大,最大值為 元……………………………………………………………………………………14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題P:函數(shù)是增函數(shù),命題Q:

(1)寫出命題Q的否命題,并求出實(shí)數(shù)的取值范圍,使得命題為真命題;

(2)如果是真命題,是假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三條直線l12x-y+a =" 0" (a0),直線l2-4x+2y+1 = 0和直線l3x+y-1= 0,且l1l2的距離是

1)求a的值;

2)能否找到一點(diǎn)P,使得P點(diǎn)同時(shí)滿足下列三個(gè)條 件:

①P是第一象限的點(diǎn);

②P 點(diǎn)到l1的距離是P點(diǎn)到l2的距離的;

③P點(diǎn)到l1的距離與P點(diǎn)到l3的距離之比是.若能,求P點(diǎn)坐標(biāo);若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(Ⅰ)求的值域 ;

(Ⅱ)若時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【湖南省2017屆高三長(zhǎng)郡中學(xué)、衡陽八中等十三校重點(diǎn)中學(xué)第一次聯(lián)考數(shù)學(xué)(理)】

已知函數(shù).

(1)當(dāng)時(shí),試求函數(shù)圖像過點(diǎn)的切線方程;

(2)當(dāng)時(shí),若關(guān)于的方程有唯一實(shí)數(shù)解,試求實(shí)數(shù)的取值范圍;

(3)若函數(shù)有兩個(gè)極值點(diǎn),且不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)3ax22bxcabc0,f(0)>0,f(1)>0,證明a>0,并利用二分法證明方程f(x)0在區(qū)間[0,1]內(nèi)有兩個(gè)實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,其中

(1)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

(2)若存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln x-ax(a∈R)(e=2.718 28…是自然對(duì)數(shù)的底數(shù)).

(1)判斷f(x)的單調(diào)性;

(2)當(dāng)f(x)<0在(0,+∞)上恒成立時(shí),求a的取值范圍;

(3)證明:當(dāng)x∈(0,+∞)時(shí), (1+x) <e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.

注: 年份代碼1-7分別對(duì)應(yīng)年份2010-2016.

(1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;

(2)建立關(guān)于的回歸方程,預(yù)測(cè)年該企業(yè)污水凈化量;

(3)請(qǐng)用數(shù)據(jù)說明回歸方程預(yù)報(bào)的效果.

附注: 參考數(shù)據(jù):;

參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最。

二乘法估汁公式分別為;

反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.

查看答案和解析>>

同步練習(xí)冊(cè)答案