已知f(x)為定義在R上的奇函數(shù),且在(0,+∞)上是增函數(shù),在f(-3)=0,則f(x)>0的解集為( 。
分析:根據(jù)f(x)為奇函數(shù)得f(3)=-f(-3)=0.因此當(dāng)x>0時不等式f(x)>0化為f(x)>f(3),結(jié)合在區(qū)間(0,+∞)上f(x)是增函數(shù)得到x>3;同理當(dāng)x<0時由原不等式解出-3<x<0.再加以綜合即可得到原不等式的解集.
解答:解:∵奇函數(shù)f(x)滿足f(-3)=0,∴f(3)=-f(-3)=0.
∵函數(shù)f(x)在(0,+∞)上是增函數(shù),
∴當(dāng)x>0時,不等式f(x)>0化為f(x)>f(3),可得x>3;
當(dāng)x<0時,-x>0,不等式f(x)>0化為f(-x)<0=f(3),
可得0<-x<3,解之得-3<x<0.
綜上所述,可得原不等式的解集為{x|-3<x<0或x>3}.
故選:A
點(diǎn)評:本題給出函數(shù)的奇偶性與單調(diào)性,求解關(guān)于x的不等式,著重考查了函數(shù)的奇偶性、單調(diào)性和不等式的解法等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在(-∞,+∞)上的可導(dǎo)函數(shù),且f(x)<f′(x)對于x∈R恒成立,則( 。
A、f(2)>e2f(0),f(2010)>e2010f(0)B、f(2)<e2f(0),f(2010)>e2010f(0)C、f(2)>e2f(0),f(2010)<e2010f(0)D、f(2)<e2f(0),f(2010)<e2010f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時,有f(x+2)=-f(x),且當(dāng)x∈[0,2)時,f(x)=log2(x+1),則f(2013)+f(-2014)的值為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在(-1,1)上的奇函數(shù),當(dāng)x∈(0,1)時,f(x)=
2x2x+1

(1)證明函數(shù)f(x)在(0,1)是增函數(shù)
(2)求f(x)在(-1,1)上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
f(x)=
4-x2
+
x2-4
既是奇函數(shù),又是偶函數(shù);
②f(x)=x和f(x)=
x2
x
為同一函數(shù);
③已知f(x)為定義在R上的奇函數(shù),且f(x)在(0,+∞)上單調(diào)遞增,則f(x)在(-∞,+∞)上為增函數(shù);
④函數(shù)y=
x
2x2+1
的值域為[-
2
4
,
2
4
]

其中正確命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x(1+x),則當(dāng)x<0時,有( 。
A、f(x)=-x(1+x)B、f(x)=-x(1-x)C、f(x)=x(1-x)D、f(x)=x(x-1)

查看答案和解析>>

同步練習(xí)冊答案