已知橢圓
y2
a2
+
x2
b2
=1 (a>b>0)
的離心率e滿足3, 
1
e
, 
4
9
成等比數(shù)列,且橢圓上的點(diǎn)到焦點(diǎn)的最短距離為2-
3
.過(guò)點(diǎn)(2,0)作直線l交橢圓于點(diǎn)A,B.
(1)若AB的中點(diǎn)C在y=4x(x≠0)上,求直線l的方程;
(2)設(shè)橢圓中心為,問(wèn)是否存在直線l,使得的面積滿足2S△AOB=|OA|•|OB|?若存在,求出直線AB的方程;若不存在,說(shuō)明理由.
分析:(1)根據(jù)橢圓的幾何性質(zhì)及等比數(shù)列得出關(guān)于a,c的方程,解得a,c的值從而求出橢圓的方程.再結(jié)合點(diǎn)差法求直線l的斜率,從而得出直線l的方程;
(2)設(shè)直線l的方程為y=k(x-2),代入橢圓方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用條件等式即可求得k值,從而解決問(wèn)題.
解答:解:(1)
e2=
c2
a2
=
3
4
a-c=2-
3
…(2分),
a=2
c=
3
橢圓方程:
y2
4
+x2=1
…(4分)
設(shè)點(diǎn)A(x1,y1),B(x2,y2),中點(diǎn)為C(x0,y0),
則有:
y
2
1
4
+
x
2
1
=1
y
2
2
4
+
x
2
2
=1
(y1-y2)(y1+y2)
4
+(x1-x2)(x1+x2)=0

x0
1
+
y0
4
×k=0⇒k=-
4x0
y0
=-1

∴直線l的方程為y=-x+2…(6分),經(jīng)檢驗(yàn)y=-x+2適合題意.…(6分)
(2)設(shè)點(diǎn)A(x1,y1),B(x2,y2),則由題意可設(shè)直線l的方程為y=k(x-2)
代入橢圓方程可得:
x1+x2=
4k2
k2+4
x1x2=
4k2-4
k2+4
…(9分)
2S△AOB=|OA|•|OB|⇒x1x2+y1y2=0⇒(k2+1)x1x2-2k2(x1+x2)+4k2=0,…(11分),
經(jīng)檢驗(yàn)y=±
1
2
(x-2)
適合題意…(12分)
點(diǎn)評(píng):本小題主要考查橢圓的標(biāo)準(zhǔn)方程、橢圓的簡(jiǎn)單性質(zhì)、等比數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、方程思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面直角坐標(biāo)系xOy中,已知⊙M經(jīng)過(guò)點(diǎn)F1(0,-c),F(xiàn)2(0,c),A(
3
c,0)三點(diǎn),其中c>0.
(1)求⊙M的標(biāo)準(zhǔn)方程(用含c的式子表示);
(2)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
(其中a2-b2=c2)的左、右頂點(diǎn)分別為D、B,⊙M與x軸的兩個(gè)交點(diǎn)分別為A、C,且A點(diǎn)在B點(diǎn)右側(cè),C點(diǎn)在D點(diǎn)右側(cè).
①求橢圓離心率的取值范圍;
②若A、B、M、O、C、D(O為坐標(biāo)原點(diǎn))依次均勻分布在x軸上,問(wèn)直線MF1與直線DF2的交點(diǎn)是否在一條定直線上?若是,請(qǐng)求出這條定直線的方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知⊙M經(jīng)過(guò)點(diǎn)F1(0,-c),F(xiàn)2(0,c),A(
3
c,0)三點(diǎn),其中c>0.
(1)求⊙M的標(biāo)準(zhǔn)方程(用含c的式子表示);
(2)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)(其中a2-b2=c2)的左、右頂點(diǎn)分別為D、B,⊙M與x軸的兩個(gè)交點(diǎn)分別為A、C,且A點(diǎn)在B點(diǎn)右側(cè),C點(diǎn)在D點(diǎn)右側(cè),求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)的上下焦點(diǎn)分別為F1,F(xiàn)1,短軸兩個(gè)端點(diǎn)為P,P1,且四邊形F1PF2P1是邊長(zhǎng)為2的正方形.
(1)求橢圓方程;
(2)設(shè)△ABC,AC=2
3
,B為橢圓
y2
a2
+
x2
b2
=1(a>b>0)在x軸上方的頂點(diǎn),當(dāng)AC在直線y=-1上運(yùn)動(dòng)時(shí),求△ABC外接圓的圓心Q的軌跡E的方程;
(3)過(guò)點(diǎn)F(0,
3
2
)作互相垂直的直線l1l2,分別交軌跡E于M,N和R,Q.求四邊形MRNQ的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:南通模擬 題型:解答題

平面直角坐標(biāo)系xOy中,已知⊙M經(jīng)過(guò)點(diǎn)F1(0,-c),F(xiàn)2(0,c),A(
3
c,0)三點(diǎn),其中c>0.
(1)求⊙M的標(biāo)準(zhǔn)方程(用含c的式子表示);
(2)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
(其中a2-b2=c2)的左、右頂點(diǎn)分別為D、B,⊙M與x軸的兩個(gè)交點(diǎn)分別為A、C,且A點(diǎn)在B點(diǎn)右側(cè),C點(diǎn)在D點(diǎn)右側(cè).
①求橢圓離心率的取值范圍;
②若A、B、M、O、C、D(O為坐標(biāo)原點(diǎn))依次均勻分布在x軸上,問(wèn)直線MF1與直線DF2的交點(diǎn)是否在一條定直線上?若是,請(qǐng)求出這條定直線的方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案