函數(shù)y=(a2-1)x是R上的增函數(shù),則實(shí)數(shù)a的取值范圍為
 
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)指數(shù)函數(shù)單調(diào)性的性質(zhì)即可得到結(jié)論.
解答: 解:∵y=(a2-1)x在R上單調(diào)遞增,
∴a2-1>1,
即a2>2,
解得a<-
2
,a>
2
,
故實(shí)數(shù)a的取值范圍為(-∞,-
2
)∪(
2
,+∞)
故答案為:(-∞,-
2
)∪(
2
,+∞)
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性的應(yīng)用,要求熟練掌握指數(shù)函數(shù)的單調(diào)性與底數(shù)之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在各項(xiàng)均為正整數(shù)的等差數(shù)列{an}中,若a1=1,an=51(其中n∈N*),公差為d,則n+d的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(α+β)=3,tan(α-β)=5,則tan(2α)的值為( 。
A、-
4
7
B、
4
7
C、
1
8
D、-
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正實(shí)數(shù)a,b,c滿足a+b+c=1,則
4
a+1
+
1
b+c
的最小值為(  )
A、
3
2
B、2
C、
9
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a+2i
i
=b+i,(a,b∈R),其中i為虛數(shù)單位,則ab=(  )
A、-1B、1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={(x,y)|y=x2+mx+2},B={(x,y)|x-y+1=0,0≤x≤2}.若A∩B≠∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩直角邊長(zhǎng)分別為a,b的直角三角形的面積大小與其周長(zhǎng)大小相等,則ab的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠需要生產(chǎn)x個(gè)零件(50≤x≤150,x∈N*),經(jīng)市場(chǎng)調(diào)查得知,生產(chǎn)成本包括以下三個(gè)方面:①生產(chǎn)1個(gè)零件需要原料費(fèi)50元;②支付職工的工資由6000元的基本工資和每生產(chǎn)1個(gè)零件補(bǔ)貼20元組成;③所生產(chǎn)零件的保養(yǎng)總費(fèi)用是(x2-30x+400)元.
(1)把生產(chǎn)每個(gè)零件的平均成本P(x)表示為x的函數(shù)關(guān)系式,并求P(x)的最小值;
(2)假設(shè)生產(chǎn)的零件可以全部賣(mài)出,據(jù)測(cè)算,銷售收入Q(x)關(guān)于產(chǎn)量x的函數(shù)關(guān)系式為Q(x)=1240x-
1
30
x3,那么當(dāng)產(chǎn)量為多少時(shí)生產(chǎn)這批零件的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+
1-x
ax
(a>0)
(1)利用函數(shù)單調(diào)性的定義,判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(2)求函數(shù)y=f(x)在(0,1]上的最小值g(a)

查看答案和解析>>

同步練習(xí)冊(cè)答案