雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,P為其上一點(diǎn),且|PF1|=m|PF2|(m>1),若雙曲線的離心率e∈[3,+∞),則實(shí)數(shù)m的最大值為( 。
分析:利用雙曲線的定義和離心率的計(jì)算公式即可得出.
解答:解:∵|PF1|=m|PF2|(m>1),|PF1|-|PF2|=2a,∴|PF2|=
2a
m-1
≥c-a
,∴m≤1+
2a
c-a
=1+
2
e-1

∵雙曲線的離心率e∈[3,+∞),∴1+
2
e-1
≤2

因此m的最大值是2.
故選A.
點(diǎn)評(píng):熟練掌握雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)O和點(diǎn)F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)
的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則
OP
FP
的取值范圍為(  )
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-y2=1(a>0)
的一條準(zhǔn)線方程為x=
3
2
,則a等于
 
,該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓C的圓心為雙曲線
x2
a2
-y2=1(a>0)
的左焦點(diǎn),且與此雙曲線的漸近線相切,若圓C被直線l:x-y+2=0截得的弦長等于
2
,則a等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)O和點(diǎn)F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的一點(diǎn),并且P點(diǎn)與右焦點(diǎn)F′的連線垂直x軸,則線段OP的長為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-y2=1
的一個(gè)焦點(diǎn)坐標(biāo)為(-
3
,0)
,則其漸近線方程為( 。
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步練習(xí)冊(cè)答案