精英家教網 > 高中數學 > 題目詳情
已知等比數列{an},a1=1,a3=2,則a4=(  )
A、4
B、2
2
C、2
2
或-2
2
D、4或-4
分析:本題考查的知識點是等比數列的性質,由a1=1,a3=2,我們不難求出數列的公比,進而求出a4
解答:解:a3=a1•q2,
所以q2=2,
q=±
2
,
a4=a1•q3=±2
2
,
故選C.
點評:解答特殊數列(等差數列與等比數列)的問題時,根據已知條件構造關于基本量的方程,解方程求出基本量,再根據定義確定數列的通項公式及前n項和公式,然后代入進行運算.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

5、已知等比數列{an}的前n項和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中,a2=9,a5=243.
(1)求{an}的通項公式;
(2)令bn=log3an,求數列{
1bnbn+1
}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}滿足a1•a7=3a3a4,則數列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數列的第5項,第3項,第2項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=log2an,求數列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習冊答案