【題目】已知在平面直角坐標(biāo)系 中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為 ,右頂點(diǎn)為 ,設(shè)點(diǎn) .
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若 是橢圓上的動(dòng)點(diǎn),求線段 中點(diǎn) 的軌跡方程;
【答案】
(1)解:由已知得橢圓的半長(zhǎng)軸a=2,半焦距c= ,則半短軸b=1.
又橢圓的焦點(diǎn)在x軸上, ∴橢圓的標(biāo)準(zhǔn)方程為
(2)解:設(shè)線段PA的中點(diǎn)為M(x,y),點(diǎn)P的坐標(biāo)是(x0,y0),
由點(diǎn)P在橢圓上,得 ,
∴線段PA中點(diǎn)M的軌跡方程是
【解析】(1)由橢圓的性質(zhì)可得c,a的值,確定橢圓焦點(diǎn)在x軸,代入標(biāo)準(zhǔn)方程,即可解得。
(2)先判斷A點(diǎn)的位置,再設(shè)P和M的坐標(biāo),將M的坐標(biāo)用A和P的坐標(biāo)表示出來(lái),再代入橢圓的方程。
【考點(diǎn)精析】本題主要考查了橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了及時(shí)向群眾宣傳“十九大”黨和國(guó)家“鄉(xiāng)村振興”戰(zhàn)略,需要尋找一個(gè)宣講站,讓群眾能在最短的時(shí)間內(nèi)到宣講站.設(shè)有三個(gè)鄉(xiāng)鎮(zhèn),分別位于一個(gè)矩形的兩個(gè)頂點(diǎn)及的中點(diǎn)處,,,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與等距離的一點(diǎn)處設(shè)一個(gè)宣講站,記點(diǎn)到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和為.
(Ⅰ)設(shè),將表示為的函數(shù);
(Ⅱ)試?yán)茫á瘢┑暮瘮?shù)關(guān)系式確定宣講站的位置,使宣講站到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,點(diǎn)P(0, ),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為 .直線l的參數(shù)方程為 為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)分別為A,B,求 + 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的實(shí)軸端點(diǎn)分別為A1 , A2 , 記雙曲線的其中的一個(gè)焦點(diǎn)為F,一個(gè)虛軸端點(diǎn)為B,若在線段BF上(不含端點(diǎn))有且僅有兩個(gè)不同的點(diǎn)Pi(i=1,2),使得∠A1PiA2= ,則雙曲線的離心率e的取值范圍是( )
A.( , )
B.( , )
C.(1, )
D.( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且 .
(1)求sinB的值;
(2)若D為AC的中點(diǎn),且BD=1,求△ABD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的對(duì)稱軸為坐標(biāo)軸,頂點(diǎn)是坐標(biāo)原點(diǎn),準(zhǔn)線方程為 ,直線 與拋物線相交于不同的 , 兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)如果直線 過(guò)拋物線的焦點(diǎn),求 的值;
(3)如果 ,直線 是否過(guò)一定點(diǎn),若過(guò)一定點(diǎn),求出該定點(diǎn);若不過(guò)一定點(diǎn),試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)準(zhǔn)備投資 萬(wàn)元興辦一所中學(xué),對(duì)當(dāng)?shù)亟逃袌?chǎng)進(jìn)行調(diào)查后,得到了如下的數(shù)據(jù)表格(以班級(jí)為單位):
初中 | 26 | 4 |
高中 | 54 | 6 |
第一年因生源和環(huán)境等因素,全?偘嗉(jí)至少 個(gè),至多 個(gè),若每開設(shè)一個(gè)初、高中班,可分別獲得年利潤(rùn) 萬(wàn)元、 萬(wàn)元,則第一年利潤(rùn)最大為
A. 萬(wàn)元 B. 萬(wàn)元 C. 萬(wàn)元 D. 萬(wàn)元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com