【題目】中學生研學旅行是通過集體旅行、集中食宿方式開展的研究性學習和旅行體驗相結(jié)合的校外教育活動,是學校教育和校外教育銜接的創(chuàng)新形式,是綜合實踐育人的有效途徑.每年暑期都會有大量中學生參加研學旅行活動.為了解某地區(qū)中學生暑期研學旅行支出情況,在該地區(qū)各個中學隨機抽取了部分中學生進行問卷調(diào)查,從中統(tǒng)計得到中學生暑期研學旅行支出(單位:百元)頻率分布直方圖如圖所示.
(1)利用分層抽樣在,,三組中抽取5人,應從這三組中各抽取幾人?
(2)從(1)抽取的5人中隨機選出2人,對其消費情況進行進一步分析,求這2人不在同一組的概率;
(3)假設(shè)同組中的每個數(shù)據(jù)都用該區(qū)間的左端點值代替,估計該地區(qū)中學生暑期研學旅行支出的平均值.
【答案】(1)從這三組中抽取的人數(shù)分別為3,1,1(2)(3)百元
【解析】
(1)利用分層抽樣和頻率分布直方圖先求出再各區(qū)間的比例,再求出人數(shù);
(2)先求出基本事件的總數(shù),再求出這2人不在同一組的基本事件數(shù),再求概率即可;
(3)由頻率分布直方圖的性質(zhì)和平均數(shù)的計算公式即可求解.
(1)由頻率分布直方圖可知,,三組的頻數(shù)的比為
,
所以從中抽。人,
從中抽。人,
從中抽。人,
所以從這三組中抽取的人數(shù)分別為3,1,1;
(2)記中的3人為,,,中的1人為b,中的1人為c,
從這5人中隨機選出2人,則樣本空間
含個樣本點,
設(shè)事件A:選出的2人不在同一組,
則含7個樣本點,
所以;
(3),
估計該地區(qū)中學生暑期研學旅行支出的平均值為百元.
科目:高中數(shù)學 來源: 題型:
【題目】[2019·開封一模]已知數(shù)列中,,,利用下面程序框圖計算該數(shù)列的項時,若輸出的是2,則判斷框內(nèi)的條件不可能是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是函數(shù)的零點,.
(1)求實數(shù)的值;
(2)若不等式在上恒成立,求實數(shù)的取值范圍;
(3)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(3ωx),其中ω>0.
(1)若f(x+θ)是最小周期為2π的偶函數(shù),求ω和θ的值;
(2)若f(x)在(0,]上是增函數(shù),求ω的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】年月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID-19),簡稱“新冠肺炎”,下圖是年月日至月日累計確診人數(shù)隨時間變化的散點圖.
為了預測在未采取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)與時間變量的兩個回歸模型,根據(jù)月日至月日的數(shù)據(jù)(時間變量的值依次,,…,)建立模型和.
參考數(shù)據(jù):其中,.
(1)根據(jù)散點圖判斷,和哪一個適宜作為累計確診人數(shù)與時間變量的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)以下是月日至月日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:
時間 | 月日 | 月日 | 月日 | 月日 | 月日 |
累計確診人數(shù)的真實數(shù)據(jù) |
(i)當月日至月日這天的誤差(模型預測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于則認為模型可靠,請判斷(2)的回歸方程是否可靠?
(ii)年月日在人民政府的強力領(lǐng)導下,全國人民共同取了強力的預防“新冠肺炎”的措施,若采取措施天后,真實數(shù)據(jù)明顯低于預測數(shù)據(jù),則認為防護措施有效,請判斷預防措施是否有效?并說明理由.
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域為[0,1])的函數(shù)f(x),如果同時滿足以下三條:①對任意的x∈[0,1],總有f(x)≥0;②f (1)=1;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,則稱函數(shù)f(x)為理想函數(shù).
(1)判斷函數(shù)g(x)=2x﹣1(x∈[0,1])是否為理想函數(shù),并予以證明;
(2)若函數(shù)f(x)為理想函數(shù),假定存在x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求證f(x0)=x0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com