【題目】已知橢圓的兩個焦點分別為,離心率為.設(shè)過點的直線與橢圓相交于不同兩點, 周長為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點,證明:當(dāng)直線變化時,總有TA與的斜率之和為定值.
【答案】(1) (2)見解析
【解析】試題分析:(Ⅰ)根據(jù)題意列出關(guān)于 、 、的方程組,結(jié)合性質(zhì) , ,求出 、 、,即可得結(jié)果;(II) 當(dāng)直線垂直于軸時,顯然直線與的斜率之和為0; 當(dāng)直線不垂直于軸時,設(shè)的方程為 與橢圓方程聯(lián)立,根據(jù)兩點間的斜率公式及韋達(dá)定理將 用參數(shù) 表示,化簡消去 即可得結(jié)論.
試題解析:(Ⅰ)由已知條件得,所以
橢圓C的標(biāo)準(zhǔn)方程為
(Ⅱ)當(dāng)直線垂直于軸時,顯然直線與的斜率之和為0;
當(dāng)直線不垂直于軸時,設(shè)的方程為,
與橢圓方程聯(lián)立得
則, ,其中恒成立。
=
=
因為=
所以
綜上:直線與的斜率之和為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知函數(shù)f(x)的定義域為[0,1],求f(x2+1)的定義域;
(2)已知f()的定義域為[0,3],求f(x)的定義域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0. 若B的坐標(biāo)為(1,2),求△ABC三邊所在直線方程及點C坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,g(x)=0.5x2-bx, (b為常數(shù))。
(1)函數(shù)f(x)的圖象在點(1,f(1))處的切線與函數(shù)g(x)的圖象相切,求實數(shù)b的值;
(2)若函數(shù)h(x)=f(x)+g(x)在定義域上不單調(diào),求實數(shù)b的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的焦點為,拋物線上一定點.
(1)求拋物線的方程及準(zhǔn)線的方程;
(2)過焦點的直線(不經(jīng)過點)與拋物線交于兩點,與準(zhǔn)線交于點,記的斜率分別為,問是否存在常數(shù),使得成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù) 和的圖象如圖
給出下列四個命題:
①方程有且僅有個根;②方程有且僅有個根;
③方程有且僅有個根;④方程有且僅有個根;
其中正確命題的序號是( )
A. ①②③ B. ②③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋中有7個大小、形狀相同的小球,6個白球1個紅球.現(xiàn)任取1個,若為紅球就停止,若為白球就放回,攪拌均勻后再接著。囋O(shè)計一個模擬試驗,計算恰好第三次摸到紅球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com