設(shè)a>0,求函數(shù)f(x)=-ln(x+a)(xÎ(0,+¥))的單調(diào)區(qū)間.

 

答案:
解析:

本題主要考查導(dǎo)數(shù)的概念和計(jì)算,應(yīng)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法及推理和運(yùn)算能力.

解:

當(dāng)a>0,x>0時(shí)  f¢(x)>0Ûx2+(2a-4)x+a2>0.f¢(x)<0Ûx2+(2a-4)x+a2<0

(1)當(dāng)a>1時(shí),對(duì)所有x>0,有x2+(2a-4)+a2>0.即f¢(x)>0,此時(shí)f(x)在(0,+¥)內(nèi)單調(diào)遞增.(2)當(dāng)a=1時(shí),對(duì)x¹1,有x2+(2a-4)+a2>0,即f¢(x)>0,此時(shí)f(x)在(0,1)內(nèi)單調(diào)遞增,又知函數(shù)f(x)在x=1處連續(xù),因此,函數(shù)f(x)在(0,+¥)內(nèi)單調(diào)遞增.(3)當(dāng)0<a<1時(shí),令f¢(x)>0,即x2+(2a-4)x+a2>0.解得x<2-a-,或x>2-a+.因此,函數(shù)f(x)在區(qū)間(0,2-a-)內(nèi)單調(diào)遞增,在區(qū)間(2-a+,+¥)內(nèi)也單調(diào)遞增.令f¢(x)<0,即x2+(2a-4)+a2<0,解得2-a-<x<2-a+.因此,函數(shù)f(x)在區(qū)間(2-a-,2-a+)內(nèi)單調(diào)遞減

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
lnxx
,
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,求函數(shù)f(x)在[2a,4a]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3ax2+b(a∈R,b∈R).
(I) 設(shè)a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 設(shè)a=-1,若方程f(x)=0在[-2,2]上有且僅有一個(gè)實(shí)數(shù)解,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
lnxx

(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,求函數(shù)f(x)在[2a,4a]上的最小值;
(3)某同學(xué)發(fā)現(xiàn):總存在正實(shí)數(shù)a、b(a<b),使ab=ba,試問(wèn):他的判斷是否正確?若不正確,請(qǐng)說(shuō)明理由;若正確,請(qǐng)直接寫(xiě)出a的取值范圍(不需要解答過(guò)程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

設(shè)a>0,求函數(shù)f(x)=-ln(x+a)(xÎ(0,+¥))的單調(diào)區(qū)間.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案