【題目】已知函數(shù)f(x)為偶函數(shù),且當(dāng)x>0時,f′(x)=(x﹣1)(x﹣2),則下列關(guān)系一定成立的是( )
A.f(1)<f(2)
B.f(0)>f(﹣1)
C.f(﹣2)<f(1)
D.f(﹣1)<f(2)
【答案】C
【解析】解:當(dāng)f′(x)>0時,即(x﹣1)(x﹣2)>0解得0<x<1或x>2,函數(shù)單調(diào)遞增,
當(dāng)f′(x)<0時,即(x﹣1)(x﹣2)<0解得1<x<2,函數(shù)單調(diào)遞減,
∴f(x)在(0,1)和(2,+∞)單調(diào)遞增,在(1,2)上單調(diào)遞減,
∴f(1)>f(2),f(0)<f(1)=f(﹣1),f(﹣2)=f(2)<f(1),f(﹣1)=f(1)>f(2),
故選:C
【考點(diǎn)精析】根據(jù)題目的已知條件,利用基本求導(dǎo)法則的相關(guān)知識可以得到問題的答案,需要掌握若兩個函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(x2﹣2x﹣3),則使f(x)為減函數(shù)的區(qū)間是( )
A.(3,6)
B.(﹣1,0)
C.(1,2)
D.(﹣3,﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若(1﹣2x)5=a0+a1x+…+a5x5(x∈R),則(a0+a2+a4)2﹣(a1+a3+a5)2=( )
A.243
B.﹣243
C.81
D.﹣81
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)有兩定點(diǎn)A、B及動點(diǎn)P,設(shè)命題甲:“|PA|+|PB|是定值”,命題乙:“點(diǎn)P的軌跡是以A、B為焦點(diǎn)的橢圓”,則甲是乙的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=x2﹣3x+b,則f(﹣2)=( )
A.﹣2
B.2
C.10
D.﹣10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時,f(x)=x2+x﹣1,那么當(dāng)x=0時,f(x)=; 當(dāng)x<0時,f(x)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a=0.72.1 , b=0.72.5 . c=2.10.7 , 則這三個數(shù)的大小關(guān)系為( )
A.b<a<c
B.a<b<c
C.c<a<b
D.c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|x≥2},B={x|0≤x<5},則集合(UA)∩B=( )
A.{x|0<x<2}
B.{x|0≤x<2}
C.{x|0<x≤2}
D.{x|0≤x≤2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】36的所有正約數(shù)之和可按如下方法得到:因為36=22×32 , 所以36的所有正約數(shù)之和為(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,參照上述方法,可求得2000的所有正約數(shù)之和為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com