【題目】若不等式ln(x+2)+a(x2+x)≥0對于任意的x∈[﹣1,+∞)恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[0,+∞)
B.[0,1]
C.[0,e]
D.[﹣1,0]
【答案】B
【解析】解:令f(x)=ln(x+2)+a(x2+x),x∈[﹣1,+∞),
∵不等式ln(x+2)+a(x2+x)≥0對于任意的x∈[﹣1,+∞)恒成立,
∴fmin(x)≥0,
f′(x)= +2ax+a= ,
令g(x)=2ax2+5ax+2a+1,
⑴若a=0,則g(x)=1,∴f′(x)>0,
∴f(x)在[﹣1,+∞)上單調(diào)遞增,∴fmin(x)=f(﹣1)=0,符合題意;
⑵若a>0,則g(x)的圖象開口向上,對稱軸為x=﹣ ,
∴g(x)在[﹣1,+∞)上單調(diào)遞增,∴gmin(x)=g(﹣1)=1﹣a,
①若1﹣a≥0,即0<a≤1,則g(x)≥0,∴f′(x)≥0,由(1)可知符合題意;
②若1﹣a<0,即a>1,則存在x0∈(﹣1,+∞),
使得當(dāng)x∈(﹣1,x0)時(shí),g(x)<0,當(dāng)x∈(x0,+∞)時(shí),g(x)>0,
∴f(x)在(﹣1,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增,
∴fmin(x)<f(﹣1)=0,不符合題意;
⑶若a<0,則g(x)的圖象開口向下,對稱軸為x=﹣ ,
∴g(x)在[﹣1,+∞)上單調(diào)遞減,gmax(x)=g(﹣1)=1﹣a>0,
∴存在x1∈(﹣1,+∞),使得當(dāng)x∈(﹣1,x1)時(shí),g(x)>0,當(dāng)x∈(x1,+∞)時(shí),g(x)<0,
∴f(x)在(﹣1,x1)單調(diào)遞增,在(x1,+∞)上單調(diào)遞減,
∴f(x)在(﹣1,+∞)上不存在最小值,不符合題意;
綜上,a的取值范圍是[0,1].
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角梯形ABCD中, 是邊長為2的等邊三角形,AB=5.沿CE將 折起,使B至 處,且 ;然后再將 沿DE折起,使A至 處,且面 面CDE, 和 在面CDE的同側(cè).
(Ⅰ) 求證: 平面CDE;
(Ⅱ) 求平面 與平面CDE所構(gòu)成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)結(jié)論正確的個(gè)數(shù)為( ) ①小趙、小錢、小孫、小李到4個(gè)景點(diǎn)旅游,每人只去一個(gè)景點(diǎn),設(shè)事件A=“4個(gè)人去的景點(diǎn)不相同”,事件B=“小趙獨(dú)自去一個(gè)景點(diǎn)”,則 ;
②設(shè)函數(shù)f(x)存在導(dǎo)數(shù)且滿足 ,則曲線y=f(x)在點(diǎn)(2,f(2))處的切線斜率為﹣1;
③設(shè)隨機(jī)變量ξ服從正態(tài)分布N(μ,7),若P(ξ<2)=P(ξ>4),則μ與Dξ的值分別為μ=3,Dξ=7.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且s6>s7>s5 , 給出下列五個(gè)命題:①d>0;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項(xiàng)為S11;⑤|a5|>|a7|.其中正確命題的個(gè)數(shù)為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: + =1,圓C2:x2+y2=t經(jīng)過橢圓C1的焦點(diǎn).
(1)設(shè)P為橢圓上任意一點(diǎn),過點(diǎn)P作圓C2的切線,切點(diǎn)為Q,求△POQ面積的取值范圍,其中O為坐標(biāo)原點(diǎn);
(2)過點(diǎn)M(﹣1,0)的直線l與曲線C1 , C2自上而下依次交于點(diǎn)A,B,C,D,若|AB|=|CD|,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左,右焦點(diǎn)分別為F1 , F2 , 過F1任作一條與兩坐標(biāo)軸都不垂直的直線,與C交于A,B兩點(diǎn),且△ABF2的周長為8.當(dāng)直線AB的斜率為 時(shí),AF2與x軸垂直. (I)求橢圓C的方程;
(Ⅱ)在x軸上是否存在定點(diǎn)M,總能使MF1平分∠AMB?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}前5項(xiàng)和為50,a7=22,數(shù)列{bn}的前n項(xiàng)和為Sn , b1=1,bn+1=3Sn+1. (Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{cn}滿足 ,n∈N* , 求c1+c2+…+c2017的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程kx2﹣2lnx﹣k=0有兩個(gè)不等實(shí)根,則實(shí)數(shù)k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“中學(xué)生詩詞大賽”海選,規(guī)定:成績大于或等于90分的具有參賽資格.某校有800名學(xué)生參加了海選,所有學(xué)生的成績均在區(qū)間[30,150]內(nèi),其頻率分布直方圖如圖:
(Ⅰ)求獲得參賽資格的人數(shù);
(Ⅱ)若大賽分初賽和復(fù)賽,在初賽中每人最多有5次選題答題的機(jī)會,累計(jì)答對3題或答錯(cuò)3題即終止,答對3題者方可參加復(fù)賽.已知參賽者甲答對每一個(gè)問題的概率都相同,并且相互之間沒有影響,已知他連續(xù)兩次答錯(cuò)的概率為 ,求甲在初賽中答題個(gè)數(shù)X的分布列及數(shù)學(xué)期望E(X)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com