已知二次函數(shù)f(x)=ax2+(b-2)x+c(2a-3≤x≤1)是偶函數(shù),則a+b=
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱可得2a-3=-1,根據(jù)偶函數(shù)的奇次項(xiàng)系數(shù)為0,可得b-2=0,進(jìn)而得到答案.
解答: 解:∵二次函數(shù)f(x)=ax2+(b-2)x+c(2a-3≤x≤1)是偶函數(shù),
故2a-3=-1,b-2=0,
解得a=1,b=2,
故a+b=3,
故答案為:3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),偶函數(shù)的性質(zhì),其中根據(jù)偶函數(shù)的性質(zhì)構(gòu)造關(guān)于a,b的方程是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,D為棱AA1的中點(diǎn).若AA1=4,AB=2,則三棱錐A1-BC1D的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=
x-1, x≥2
1, x<2
,g(x)=x2-x(x∈R),則方程f[g(x)]=x的解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若B=2A,a=1,b=
3
,則c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足
an+1
=
a1
+
a2
+
a3
+…
an
,a1=4,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)C在線段AB上(端點(diǎn)除外),若C分AB的比λ=
AC
CB
,則得分點(diǎn)C的坐標(biāo)公式
xC=
xAxB
1+λ
yC=
yAyB
1+λ
.如圖所示,對(duì)于函數(shù)f(x)=x2(x>0)上任意兩點(diǎn)A(a,a2),B(b,b2),線段AB必在弧AB上方.由圖象中的點(diǎn)C在點(diǎn)C′正上方,有不等式
a2b2
1+λ
>(
a+λb
1+λ
2成立.對(duì)于函數(shù)y=lnx的圖象上任意兩點(diǎn)A(a,lna),B(b,lnb),類比上述不等式可以得到的不等式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cos(x+1),x∈[0,2π]的圖象與直線y=
1
3
的交點(diǎn)的橫坐標(biāo)之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的前n項(xiàng)和Sn=2n2-9n+2,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線x2+8y=0的準(zhǔn)線方程是( 。
A、x=2B、x=-2
C、y=2D、y=-2

查看答案和解析>>

同步練習(xí)冊(cè)答案