已知函數(shù)f(x)=x-4+
9
x+1
,x∈(0,4),當(dāng)x=a時,f(x)取得最小值b,則函數(shù)g(x)=a|x+b|的圖象為( 。
A、
B、
C、
D、
考點(diǎn):指數(shù)函數(shù)的圖像變換
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先根據(jù)基本不等式求出a,b的值,再結(jié)合指數(shù)函數(shù)的性質(zhì)及函數(shù)的圖象的平移可求
解答: 解:∵x∈(0,4),
∴x+1>1
∴f(x)=x-4+
9
x+1
=x+1+
9
x+1
-5≥2
9
x-1
•(x-1)
-5=1,
當(dāng)且僅當(dāng)x=2時取等號,此時函數(shù)有最小值1
∴a=2,b=1,
此時g(x)=(
1
2
)|x+1|
=
(
1
2
)x+1,x≥-1
2x+1,x<1

此函數(shù)可以看著函數(shù)y=
(
1
2
)x,x≥0
2x,x<0
的圖象向左平移1個單位
結(jié)合指數(shù)函數(shù)的圖象及選項(xiàng)可知B正確
故選B
點(diǎn)評:本題主要考察了基本不等式在求解函數(shù)的最值中的應(yīng)用,指數(shù)函數(shù)的圖象及函數(shù)的平移的應(yīng)用是解答本題的關(guān)鍵
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
x1
,
x2
,
x3
為同一平面內(nèi)具有相同起點(diǎn)的任意三個非零向量,且滿足
x1
x2
不共線,
x1
x3
,|
x1
|=|
x3
|,則|
x2
x3
|的值一定等于( 。
A、以
x2
,
x3
為兩邊的三角形面積
B、以
x1
,
x2
為鄰邊的平行四邊形的面積
C、以
x1
,
x2
為兩邊的三角形面積
D、以
x2
,
x3
為鄰邊的平行四邊形的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式ax2+2x+2a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3+log2x,x∈[1,16],若函數(shù)g(x)=[f(x)]2+2f(x2).
(1)求函數(shù)g(x)的定義域;
(2)求函數(shù)g(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a2=4,a3=12,且{an+1-2an}是等比數(shù)列
(1)證明:{
an
2n
}是等差數(shù)列;
(2)求數(shù)列{
an
n
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=10x+1,則方程f-1(x)=1-lg(x+2)的解x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
x
-lnx,其中a∈R,且曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于直線y=-x.
(Ⅰ)求a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn=2n2-n+m(m∈R),則“m=0”是“數(shù)列{an}為等差數(shù)列”的( 。
A、充分必要條件
B、充分而不必要條件
C、必要而不必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個敘述中正確的個數(shù)是( 。
①∅={0};        
②任何一個集合必有兩個或兩個以上的子集;
③空集沒有子集;     
④空集是任何一個集合的子集.
A、0個B、1個C、2個D、3個

查看答案和解析>>

同步練習(xí)冊答案