【題目】某投資公司計(jì)劃投資A,B兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)y1與投資金額x的函數(shù)關(guān)系為y1=18﹣ ,B產(chǎn)品的利潤(rùn)y2與投資金額x的函數(shù)關(guān)系為y2= (注:利潤(rùn)與投資金額單位:萬(wàn)元).
(1)該公司已有100萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬(wàn)元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤(rùn)總和表示為x的函數(shù),并寫出定義域;
(2)在(1)的條件下,試問(wèn):怎樣分配這100萬(wàn)元資金,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?
【答案】
(1)解:其中x萬(wàn)元資金投入A產(chǎn)品,則剩余的100﹣x(萬(wàn)元)資金投入B產(chǎn)品,
利潤(rùn)總和f(x)=18﹣ + =38﹣ ﹣ (x∈[0,100]).
(2)解:∵f(x)=40﹣ ﹣ ,x∈[0,100],
∴由基本不等式得:f(x)≤40﹣2 =28,取等號(hào),當(dāng)且僅當(dāng) = 時(shí),即x=20.答:分別用20萬(wàn)元和80萬(wàn)元資金投資A、B兩種金融產(chǎn)品,可以使公司獲得最大利潤(rùn),最大利潤(rùn)為28萬(wàn)元.
【解析】(1)其中x萬(wàn)元資金投入A產(chǎn)品,則剩余的100﹣x(萬(wàn)元)資金投入B產(chǎn)品,根據(jù)A產(chǎn)品的利潤(rùn)y1與投資金額x的函數(shù)關(guān)系為y1=18﹣ ,B產(chǎn)品的利潤(rùn)y2與投資金額x的函數(shù)關(guān)系為y2= ,可得利潤(rùn)總和;(2)f(x)=40﹣ ﹣ ,x∈[0,100],由基本不等式,可得結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)抽取某中學(xué)甲乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)平面垂直,下列命題: ①一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面內(nèi)的任意一條直線.
②一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面內(nèi)的無(wú)數(shù)條直線.
③一個(gè)平面內(nèi)的任一條直線必垂直于另一個(gè)平面.
④一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直.
其中正確命題的個(gè)數(shù)是( )
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知不等式組 表示的平面區(qū)域?yàn)镈,則
(1)z=x2+y2的最小值為 .
(2)若函數(shù)y=|2x﹣1|+m的圖象上存在區(qū)域D上的點(diǎn),則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=1,其前n項(xiàng)和為Sn , 且滿足an= (n≥2)
(1)求Sn;
(2)證明:當(dāng)n≥2時(shí),S1+ S2+ S3+…+ Sn< ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是某高三學(xué)生進(jìn)入高中三年來(lái)的數(shù)學(xué)考試成績(jī)的莖葉圖,第1次到第第14次的考試成績(jī)依次記為A1 , A2 , …A14 , 如圖2是統(tǒng)計(jì)莖葉圖中成績(jī)?cè)谝欢ǚ秶鷥?nèi)考試次數(shù)的一個(gè)算法流程圖,那么算法流程圖輸出的結(jié)果是( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正實(shí)數(shù)a,b滿足a+b=1,則( )
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知對(duì)任意平面向量 =(x,y),把 繞其起點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)θ得到點(diǎn)P.
(1)已知平面內(nèi)點(diǎn)A(2,3),點(diǎn)B(2+2 ,1).把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn) 角得到點(diǎn)P,求點(diǎn)P的坐標(biāo).
(2)設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn) 后得到的點(diǎn)的軌跡方程是曲線y= ,求原來(lái)曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+2kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com