設(shè)p:(
1
2
)
x
21-x,2x2
成等比數(shù)列;q:lgx,lg(x+1),lg(x+3)成等差數(shù)列,則條件p是條件q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既木充分也不必要條件
若命題p:(
1
2
)
x
,21-x,2x2
成等比數(shù)列為真命題,
(
2
2x
)
2
=(
1
2
)
x
2x2

即 x2+x-2=0
即x∈{1,-2}
若命題q:lgx,lg(x+1),lg(x+3)成等差數(shù)列
2lg(x+1)=lg(x)+lg(x+3)
x>0

(x+1)2=x•(x+3)
x>0

解得x∈{1}
故p是q的必要不充分條件
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)=
2x
2x+
2
上兩點p1(x1,y1),p2(x2,y2),若
op
=
1
2
(
op1
+
op2
)
,且P點的橫坐標(biāo)為
1
2

(1)求P點的縱坐標(biāo);
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(
n
n
)
,求Sn;
(3)記Tn為數(shù)列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n項和,若Tn<a(Sn+2+
2
)
對一切n∈N*都成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1、x2∈R,規(guī)定運算“*”:x1*x2=(x1+x22+(x1-x22
(Ⅰ)若x≥0,a>0,求動點P(x,
a*x
)的軌跡c;
(Ⅱ)設(shè)P(x,y)是平面內(nèi)任意一點,定義:d1(p)=
1
2
(x*x)+(y*y)
,d2(p)=
1
2
(x-a)*(x-a)
,問在(Ⅰ)中的軌跡c上是否存在兩點A1、A2,使之滿足d1(Ai)=
a
d2(Ai
)(i=1、2),若存在,求出a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C:y2=2px(p>0)的焦點為F,準(zhǔn)線為l,A為C上一點,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點,若△BDF為等邊三角形,△ABD的面積為6,則p的值為
3
3
,圓F的方程為
(x-
3
2
)2+y2=12
(x-
3
2
)2+y2=12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:
12
≤x≤1
; q:x2+x-2≤0,則p是q的
 
條件.(用“充分而不必要”或“必要而不充分”或“充要”或“既不充分也不必要”填寫).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆福建省福州八縣(市)協(xié)作校高二下學(xué)期期末聯(lián)考數(shù)學(xué)(文) 題型:解答題

(本小題滿分12分)

設(shè)p:實數(shù)x滿足

(1)若為真,求實數(shù)x的取值范圍;

(2)若p是q的充分不必要條件,求實數(shù)a的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案