如圖,在平面直角坐標(biāo)系中,已知,是橢圓上不同的三點(diǎn),,,在第三象限,線段的中點(diǎn)在直線上.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)C的坐標(biāo);
(3)設(shè)動(dòng)點(diǎn)在橢圓上(異于點(diǎn),)且直線PB,PC分別交直線OA兩點(diǎn),證明為定值并求出該定值.

(1)求橢圓方程一般用待定系數(shù)法.本題已知橢圓過(guò)兩點(diǎn),列兩個(gè)方程,解出的值,(2)求點(diǎn)的坐標(biāo),需列出兩個(gè)方程.一是點(diǎn)C在橢圓上,即,二是的中點(diǎn)在直線上,即.注意到在第三象限,舍去正值.(3)題意明確,思路簡(jiǎn)潔,就是求出點(diǎn)的坐標(biāo),算出為定值.難點(diǎn)是如何消去參數(shù).因?yàn)辄c(diǎn)在直線上,所以可設(shè),.選擇作為參數(shù),即用表示點(diǎn)的坐標(biāo).由三點(diǎn)共線,解得,同理解得.從而有,這里主要用到代入化簡(jiǎn).本題也可利用橢圓參數(shù)方程或三角表示揭示為定值.

解析試題分析:(1),(2),(3).
試題解析:(1)由已知,得  解得 2分
所以橢圓的標(biāo)準(zhǔn)方程為. 3分
(2)設(shè)點(diǎn),則中點(diǎn)為
由已知,求得直線的方程為,從而.①
又∵點(diǎn)在橢圓上,∴.②
由①②,解得(舍),,從而. 5分
所以點(diǎn)的坐標(biāo)為. 6分
(3)設(shè),
三點(diǎn)共線,∴,整理,得. 8分
三點(diǎn)共線,∴,整理,得. 10分
∵點(diǎn)在橢圓上,∴,
從而. 14分
所以. 15分
為定值,定值為. 16分
考點(diǎn):橢圓標(biāo)準(zhǔn)方程,直線與橢圓位置關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理)已知點(diǎn)是平面直角坐標(biāo)系上的一個(gè)動(dòng)點(diǎn),點(diǎn)到直線的距離等于點(diǎn)到點(diǎn)的距離的2倍.記動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)斜率為的直線與曲線交于兩個(gè)不同點(diǎn),若直線不過(guò)點(diǎn),設(shè)直線的斜率分別為,求的數(shù)值;
(3)試問(wèn):是否存在一個(gè)定圓,與以動(dòng)點(diǎn)為圓心,以為半徑的圓相內(nèi)切?若存在,求出這個(gè)定圓的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線上的任意一點(diǎn)到該拋物線焦點(diǎn)的距離比該點(diǎn)到軸的距離多1.

(1)求的值;
(2)如圖所示,過(guò)定點(diǎn)(2,0)且互相垂直的兩條直線、分別與該拋物線分別交于、、、四點(diǎn).
(i)求四邊形面積的最小值;
(ii)設(shè)線段、的中點(diǎn)分別為兩點(diǎn),試問(wèn):直線是否過(guò)定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的焦點(diǎn)在軸上,離心率為,對(duì)稱軸為坐標(biāo)軸,且經(jīng)過(guò)點(diǎn)
(1)求橢圓的方程;
(2)直線與橢圓相交于、兩點(diǎn), 為原點(diǎn),在、上分別存在異于點(diǎn)的點(diǎn)、,使得在以為直徑的圓外,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓,橢圓的長(zhǎng)軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),點(diǎn)分別在橢圓上,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓的中心在原點(diǎn)O,右焦點(diǎn)F在x軸上,橢圓與y軸交于A、B兩點(diǎn),其右準(zhǔn)線l與x軸交于T點(diǎn),直線BF交橢圓于C點(diǎn),P為橢圓上弧AC上的一點(diǎn).

(1)求證:A、C、T三點(diǎn)共線;
(2)如果=3,四邊形APCB的面積最大值為,求此時(shí)橢圓的方程和P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點(diǎn)與上頂點(diǎn),直線A2B與圓C:x2+y2=1相切.
(1)求證:=1;
(2)P是橢圓E上異于A1、A2的一點(diǎn),若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點(diǎn),且·=0,試判斷直線l與圓C的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給定橢圓C:=1(a>b>0),稱圓心在原點(diǎn)O、半徑是的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(,0),其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為.
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B、D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求·的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)P,過(guò)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1,l2是否垂直?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),且+5=0.
 
(1)求橢圓E的離心率; (2)已知點(diǎn)D(1,0)為線段OF2的中點(diǎn),M為橢圓E上的動(dòng)點(diǎn)(異于點(diǎn)A、B),連結(jié)MF1并延長(zhǎng)交橢圓E于點(diǎn)N,連結(jié)MD、ND并分別延長(zhǎng)交橢圓E于點(diǎn)P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問(wèn)是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案