精英家教網 > 高中數學 > 題目詳情

【題目】函數f(x)=log (x2﹣ax+3)在(﹣∞,1)上單調遞增,則a的范圍是(
A.(2,+∞)
B.[2,+∞)
C.[2,4]
D.[2,4)

【答案】C
【解析】解:設t=g(x)=x2﹣ax+3,則y=log t為減函數,
若f(x)=log (x2﹣ax+3)在(﹣∞,1)上單調遞增,
則t=g(x)=x2﹣ax+3在(﹣∞,1)上單調遞減,且g(1)≥0,
= ≥1且1﹣a+3≥0,
則a≥2且a≤4,即2≤a≤4,
故選:C.
【考點精析】認真審題,首先需要了解復合函數單調性的判斷方法(復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規(guī)律:“同增異減”).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某校高二年級進行了百科知識大賽,為了了解高二年級900名同學的比賽情況,現在甲、乙兩個班級各隨機抽取了10名同學的成績,比賽成績滿分為100分,80分以上可獲得二等獎,90分以上可以獲得一等獎,已知抽取的兩個班學生的成績(單位:分)數據的莖葉圖如圖1所示:

(1)比較兩組數據的分散程度(只需要給出結論),并求出甲組數據的頻率分布直方圖如圖2中所示的值;

(2)現從兩組數據中獲獎的學生里分別隨機抽取一人接受采訪,求被抽中的甲班學生成績高于乙班學生成績的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,直線與拋物線交于兩點.

(Ⅰ)若直線過焦點,且與圓交于(其中軸同側),求證: 是定值;

(Ⅱ)設拋物線點的切線交于點,試問: 軸上是否存在點,使得為菱形?若存在,請說明理由并求此時直線的斜率和點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)= +lg(2x+1)的定義域為(
A.(﹣5,+∞)
B.[﹣5,+∞)
C.(﹣5,0)
D.(﹣2,0)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數y=f(x)的定義域是[0,2],則函數g(x)= 的定義域是(
A.[0,1)∪(1,2]
B.[0,1)∪(1,4]
C.[0,1)
D.(1,4]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在三棱錐P ABC中,PA⊥底面ABC,BCA90°,APAC,點D,E分別在棱PB,PC上,且BC∥平面ADE.

Ⅰ)求證:DE⊥平面PAC;

PCAD,且三棱錐PABC的體積為8,求多面體ABCED的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了研究一片大約一萬株樹木的生長情況,隨機測量了其中100株樹木的底部周長(單位:cm),根據所得數據畫出的樣本頻率分布直方圖如圖,那么在這片樹木中底部周長大于100cm的株樹大約中(
A.3000
B.6000
C.7000
D.8000

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y= 的定義域為(
A.{x|x≥1}
B.{x|x≥1或x=0}
C.{x|x≥0}
D.{x|x=0}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

已知橢圓的離心率為,且點在橢圓上.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)若斜率為k的直線交橢圓A,B兩點,求△OAB面積的最大值.

查看答案和解析>>

同步練習冊答案