【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點.

1若PA=PD,求證:平面PQB⊥平面PAD;

2若平面PAD⊥平面ABCD,且PA=PD=AD=2,點M在線段PC上,且PM=3MC,求三棱錐P﹣QBM的體積.

【答案】1詳見解析2

【解析】

試題分析:1由PA=PD,得到PQAD,又底面ABCD為菱形,BAD=60°,得BQAD,利用線面垂直的判定定理得到AD平面PQB利用面面垂直的判定定理得到平面PQB平面PAD;2由平面PAD平面ABCD,平面PAD平面ABCD=AD,PQAD,得PQ平面ABCD,BC平面ABCD,得PQBC,得BC平面PQB,即得到高,利用椎體體積公式求出

試題解析:1PA=PD,

PQAD,

底面ABCD為菱形,BAD=60°,

BQAD,PQBQ=Q,

AD平面PQB

AD平面PAD,

平面PQB平面PAD

2平面平面,平面平面,,

∴PQ平面,平面,

∴PQBC

BCBQ,

平面

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在直角梯形中,,分別是上的點,,且 如圖1. 將四邊形沿折起,連結 如圖2. 在折起的過程中,下列說法中錯誤的個數(shù)是

平面;

四點不可能共面;

,則平面平面;

平面與平面可能垂直.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某海濱城市附近海面有一臺風,據(jù)監(jiān)測,當前臺風中心位于城市如圖東偏南方向300km的海面,并以20km/h速度向西偏北方向移動,臺風侵襲的范圍為圓形區(qū)域,當前半徑為60km,并以10km/h速度不斷增大,問幾小時后該城市開始受到臺風的侵襲?受到臺風侵襲的時間有多少小時?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,的整數(shù)部分用表示,則的值為

A. 8204 B.8192 C.9218 D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)某旅行社設計了一個組織旅游團包飛去廣州旅游的方案,其中旅行杜的包機費用為元,旅游團中最多能有,并且旅游團中的人數(shù) (單位:個)與每個人交給旅行社的費用單位:的關系如下:.

(1)將旅行社的利潤單位:表示成旅游團中的人數(shù)的函數(shù)(注:利潤=收取的費用一包機費用);

(2)當旅游團有多少人時,旅行社的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,根據(jù)下列條件解三角形,則其中有二個解的是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,角A,B,C所對的邊分別為a,b,c,已知cos C+cos A- sin Acos B=0.

1求角B的大;

2若a+c=1,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.

1直線過點,且與圓交于兩點,若,求直線的方程;

2過圓上一動點作平行于軸的直線,設軸的交點為,若向量,求動點的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)上是奇函數(shù),且對任意都有,當時,,

)求的值;

)判斷的單調性,并證明你的結論;

)求不等式的解集.

查看答案和解析>>

同步練習冊答案