已知四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,PA⊥平面ABCD,E為BC中點(diǎn),求證:AE⊥PD.
考點(diǎn):向量在幾何中的應(yīng)用,空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系
專(zhuān)題:平面向量及應(yīng)用,空間位置關(guān)系與距離
分析:由已知條件,設(shè)
AB
=
a
,
AD
=
b
,
AP
=
c
,利用向量法進(jìn)行證明.
解答: 證:設(shè)
AB
=
a
,
AD
=
b
,
AP
=
c
,
∵PA⊥平面ABCD,
a
c
=0,
b
c
=0,
∵∠ABC=60°,四邊形ABCD為菱形,
a
b
=|
a
|•|
b
|•cos∠BAD=|
b
|2•cos120°
=-
1
2
|
b
|2
AE
=
AB
+
BE
=
a
+
1
2
b

PD
=
PA
+
AB
+
BC
+
CD
=-
c
+
a
+
b
-
a
=
b
-
c
,
AE
PD
=(
a
+
1
2
b
)•(
b
-
c

=
a
b
+
1
2
|
b
|2-
a
c
-
1
2
b
c

=-
1
2
|
b
|2+
1
2
|
b
|2=0,
AE
PD

∴AE⊥PD.
點(diǎn)評(píng):本題考查空間直線(xiàn)的位置關(guān)系,是基礎(chǔ)題,解題時(shí)要注意向量法的合理運(yùn)用,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集I={1,2,3,4,5,6},集合A={1,2,4,6},B={2,4,5,6},則∁I(A∩B)=( 。
A、{1,2,4,5,6}
B、{1,3,5}
C、{3}
D、Φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

大西洋鮭魚(yú)每年都要逆流而上2000m,游回產(chǎn)地產(chǎn)卵,研究鮭魚(yú)的科學(xué)家發(fā)現(xiàn)鮭魚(yú)的游速可以表示為函數(shù)y=
1
2
log3
x
100
),單位是m/s,其中x表示鮭魚(yú)的耗氧量的單位數(shù).
(1)當(dāng)一條鮭魚(yú)的耗氧量是8100個(gè)單位時(shí),它的游速是多少?
(2)計(jì)算一條鮭魚(yú)靜止時(shí)耗氧量的單位數(shù);
(3)若鮭魚(yú)A的游速大于鮭魚(yú)B的游速,問(wèn):這兩條鮭魚(yú)誰(shuí)的耗氧量較大?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若曲線(xiàn)y=x2-1的一條切線(xiàn)平行于直線(xiàn)y=4x-3,求這條切線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的一段圖象過(guò)點(diǎn)(0,1),如圖所示.
(1)求函數(shù)f1(x)的表達(dá)式;
(2)將函數(shù)y=f1(x)的圖象向右平移
π
4
個(gè)單位,得函數(shù)y=f2(x)的圖象,求y=f2(x)的最大值,并求出此時(shí)自變量x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算:
(log25)2-4log25+4
+log2
1
5

(2)(log43+log83)(log32+log92).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}為公差不為零的等差數(shù)列,首項(xiàng)a1=a,{an}的部分項(xiàng)ak1、ak2、…、akn恰為等比數(shù)列,且k1=1,k2=2,k3=5.
(1)求數(shù)列{an}的通項(xiàng)公式an(用a表示);
(2)若數(shù)列{kn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=2sinx•cosx-2
3
cos2x+
3

(1)求f(
π
4
)的值;
(2)若f(α)=
10
13
,且α[
π
2
,π],求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直角坐標(biāo)平面上4個(gè)點(diǎn)A(1,2),B(3,1),C(2,3),D(4,0)到直線(xiàn)y=kx的距離的平方和為S,當(dāng)k變化,S的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案