(1)若,求的最大值。
(2)為何值時,直線和曲線有兩個公共點。
(1);(2)點P的坐標為;
(3)當時,d取最小值。
解析試題分析: (1)根據(jù)已知條件,結(jié)合一正二定,三相等的思想來求解最值。
(2)聯(lián)立方程組,根據(jù)得到的方程的解的個數(shù)得到結(jié)論。
(1)已知雙曲線實半軸a1=4,虛半軸b1=2,半焦距c1=,
∴橢圓的長半軸a2=c1=6,橢圓的半焦距c2=a1=4,橢圓的短半軸=,
∴所求的橢圓方程為 …………4分
(2)由已知,,設(shè)點P的坐標為,則
由已知得
…………6分
則,解之得,
由于y>0,所以只能取,于是,所以點P的坐標為……8分
(3)直線,設(shè)點M是,則點M到直線AP的距離是,于是,
又∵點M在橢圓的長軸上,即 …………10分
∴當時,橢圓上的點到的距離
又 ∴當時,d取最小值 …………12分
考點:本題主要考查了二次函數(shù)的 最值和直線與雙曲線的位置關(guān)系的綜合運用。
點評:解決該試題的關(guān)鍵是能根據(jù)題中的條件,得到均值不等式的結(jié)構(gòu),求解最值也可以通過二次函數(shù)的性質(zhì)來求解最值,同時要對于直線與雙曲線的位置關(guān)系,通過聯(lián)立方程組,轉(zhuǎn)換為方程的解的問題來得到。
科目:高中數(shù)學 來源:2015屆遼寧實驗中學分校高二上學期期中考試文科數(shù)學試卷(解析版) 題型:解答題
已知都是正數(shù),
(1)若,求的最大值
(2)若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年安徽省高三最后壓軸卷理科數(shù)學試卷(解析版) 題型:解答題
已知,且方程有兩個不同的正根,其中一根是另一根的倍,記等差數(shù)列、的前項和分別為,且()。
(1)若,求的最大值;
(2)若,數(shù)列的公差為3,試問在數(shù)列與中是否存在相等的項,若存在,求出由這些相等項從小到大排列得到的數(shù)列的通項公式;若不存在,請說明理由.
(3)若,數(shù)列的公差為3,且,.
試證明:.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年廣東省高三上學期期中考試理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù).
(1)若,求的最大值及此時相應(yīng)的的值;
(2)在△ABC中,、b、c分別為角A、B、C的對邊,若,b =l,,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年湖南省長沙市長望瀏寧四縣高三3月調(diào)研考試數(shù)學理卷 題型:解答題
已知函數(shù).
(1)若,求的最大值;
(2)在中,若,,求的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com