11.“a=$\frac{1}{5}$”是“直線2ax+(a-1)y+2=0與直線(a+1)x+3ay+3=0垂直”的充分不必要.條件(從“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中選取一個填入)

分析 對a分類討論,利用兩條直線相互垂直的充要條件即可得出.

解答 解:經(jīng)過驗(yàn)證:a=1時,兩條直線不垂直.a(chǎn)=0時,兩條直線垂直.
a≠1,0時,由$-\frac{2a}{a-1}×(-\frac{a+1}{3a})$=-1,解得a=$\frac{1}{5}$.
可得:“a=$\frac{1}{5}$”是“直線2ax+(a-1)y+2=0與直線(a+1)x+3ay+3=0垂直”的充分不必要條件.
故答案為:充分不必要.

點(diǎn)評 本題考查了兩條直線相互垂直的充要條件、分類討論方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.網(wǎng)店和實(shí)體店各有利弊,兩者的結(jié)合將在未來一段時期內(nèi),成為商業(yè)的一個主要發(fā)展方向.某品牌行車記錄儀支架銷售公司從2017年1月起開展網(wǎng)絡(luò)銷售與實(shí)體店體驗(yàn)安裝結(jié)合的銷售模式.根據(jù)幾個月運(yùn)營發(fā)現(xiàn),產(chǎn)品的月銷量x萬件與投入實(shí)體店體驗(yàn)安裝的費(fèi)用t萬元之間滿足x=3-$\frac{2}{t+1}$函數(shù)關(guān)系式.已知網(wǎng)店每月固定的各種費(fèi)用支出為3萬元,產(chǎn)品每1萬件進(jìn)貨價格為32萬元,若每件產(chǎn)品的售價定為“進(jìn)貨價的150%”與“平均每件產(chǎn)品的實(shí)體店體驗(yàn)安裝費(fèi)用的一半”之和,則該公司最大月利潤是37.5萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|2x+a|+|2x-2b|+3
(Ⅰ)若a=1,b=1,求不等式f(x)>8的解集;
(Ⅱ)當(dāng)a>0,b>0時,若f(x)的最小值為5,求$\frac{1}{a}$+$\frac{1}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知直三棱柱ABC-A1B1C1中,AB=3,AC=4,AB⊥AC,AA1=2,則該三棱柱內(nèi)切球的表面積與外接球的表面積的和為33π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若a,b∈R,且3b+(2a-2)i=1-i,則a+b的值為( 。
A.-$\frac{1}{6}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.-$\frac{7}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某醫(yī)學(xué)院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖所示的頻率分布直方圖.該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(Ⅰ)已知選取的是1月至6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)y關(guān)于晝夜溫差x的線性回歸方程;
(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(Ⅰ)中該協(xié)會所得線性回歸方程是否理想?
參考公式:回歸直線的方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.中國有個名句“運(yùn)籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進(jìn)行計算,算籌是將幾寸長的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,如下表:

表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是:,則5288用算籌式可表示為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,為了得到g(x)=cos(ω+$\frac{π}{3}$)的圖象,則只將f(x)的圖象( 。
A.向左平移$\frac{π}{4}$個單位B.向右平移$\frac{π}{4}$個單位
C.向左平移$\frac{π}{12}$個單位D.向右平移$\frac{π}{12}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在公比為q且各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,Sn為{an}的前n項(xiàng)和.若a1=$\frac{1}{{q}^{2}}$,且S5=S2+2,則q的值為$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案