(2013•上海)甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得的利潤是100(5x+1-
3x
)元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.
分析:(1)求出生產(chǎn)該產(chǎn)品2小時獲得的利潤,建立不等式,即可求x的取值范圍;
(2)確定生產(chǎn)900千克該產(chǎn)品獲得的利潤函數(shù),利用配方法,可求最大利潤.
解答:解:(1)生產(chǎn)該產(chǎn)品2小時獲得的利潤為100(5x+1-
3
x
)×2=200(5x+1-
3
x

根據(jù)題意,200(5x+1-
3
x
)≥3000,即5x2-14x-3≥0
∴x≥3或x≤-
1
5

∵1≤x≤10,∴3≤x≤10;
(2)設(shè)利潤為 y元,則生產(chǎn)900千克該產(chǎn)品獲得的利潤為y=100(5x+1-
3
x
)×
900
x

=90000(-
3
x2
+
1
x
+5
)=9×104[-3(
1
x
-
1
6
)
2
+
61
12
]
∵1≤x≤10,∴x=6時,取得最大利潤為9×104×
61
12
=457500元
故甲廠應(yīng)以6千克/小時的速度生產(chǎn),可獲得最大利潤為457500元.
點評:本題考查函數(shù)模型的建立,考查解不等式,考查函數(shù)的最值,確定函數(shù)的模型是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每一小時可獲得的利潤是100(5x+1-
3
x
)元.
(1)求證:生產(chǎn)a千克該產(chǎn)品所獲得的利潤為100a(5+
1
x
-
3
x2
)元;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)在邊長為1的正六邊形ABCDEF中,記以A為起點,其余頂點為終點的向量分別為
a1
、
a2
a3
、
a4
、
a5
;以D為起點,其余頂點為終點的向量分別為
d1
、
d2
、
d3
d4
、
d5
.若m、M分別為(
ai
+
aj
+
ak
)•(
dr
+
ds
+
dt
)的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},則m、M滿足( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知正方形ABCD的邊長為1,記以A為起點,其余頂點為終點的向量分別為
a1
,
a2
,
a3
;以C為起點,其余頂點為終點的向量分別為
c1
,
c2
,
c3
,若i,j,k,l∈{1,2,3},且i≠j,k≠l,則(
ai
+
aj
)•(
ck
+
cl
)
的最小值是
-5
-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0
(1)令ω=1,判斷函數(shù)F(x)=f(x)+f(x+
π
2
)的奇偶性,并說明理由;
(2)令ω=2,將函數(shù)y=f(x)的圖象向左平移個
π
6
單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,對任意a∈R,求y=g(x)在區(qū)間[a,a+10π]上零點個數(shù)的所有可能值.

查看答案和解析>>

同步練習(xí)冊答案