【題目】已知集合A{x|fx)=lgx1},集合B{y|y2x+a,x≤0}

1)若a,求AB;

2)若AB,求實(shí)數(shù)a的取值范圍.

【答案】1AB{x|1x}2a≥2a≤0

【解析】

1)求函數(shù)的定義域,化簡(jiǎn)集合,求出函數(shù)的值域,化簡(jiǎn)集合,即可求出結(jié)論;

2)根據(jù),確定集合的端點(diǎn)位置,即可求解.

1)由fx)=lgx1可得,x102x≥0

解得1x≤2,故A{x|1x≤2};)

a,則y2x,當(dāng)x≤0時(shí),02x≤1,2x,

B{y|};

所以AB{x|1x}

2)當(dāng)x≤0時(shí),02x≤1,a2x+aa+1,故B{y|aya+1},

因?yàn)?/span>AB,A{x|1x≤2},所以a≥2a+1≤1,

a≥2a≤0

所以實(shí)數(shù)a的取值范圍為a≥2a≤0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè):函數(shù)上單調(diào)遞減, :函數(shù)的圖象與軸交于不同的兩點(diǎn).如果, ,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入,則輸出的值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,側(cè)面與側(cè)面均為邊長為2的等邊三角形,,中點(diǎn).

(1)證明:平面;

(2)求點(diǎn)B到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了緩解日益擁堵的交通狀況,不少城市實(shí)施車牌競(jìng)價(jià)策略,以控制車輛數(shù)量.某地車牌競(jìng)價(jià)的基本規(guī)則是:①“盲拍”,即所有參與競(jìng)拍的人都要網(wǎng)絡(luò)報(bào)價(jià)一次,每個(gè)人不知曉其他人的報(bào)價(jià),也不知道參與當(dāng)期競(jìng)拍的總?cè)藬?shù);②競(jìng)價(jià)時(shí)間截止后,系統(tǒng)根據(jù)當(dāng)期車牌配額,按照競(jìng)拍人的出價(jià)從高到低分配名額.某人擬參加月份的車牌競(jìng)拍,他為了預(yù)測(cè)最低成交價(jià),根據(jù)競(jìng)拍網(wǎng)站的數(shù)據(jù),統(tǒng)計(jì)了最近個(gè)月參與競(jìng)拍的人數(shù)(見下表):

月份

月份編號(hào)

競(jìng)拍人數(shù)(萬人)

(1)由收集數(shù)據(jù)的散點(diǎn)圖發(fā)現(xiàn),可用線性回歸模型擬合競(jìng)拍人數(shù)(萬人)與月份編號(hào)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程:,并預(yù)測(cè)月份參與競(jìng)拍的人數(shù).

(2)某市場(chǎng)調(diào)研機(jī)構(gòu)從擬參加月份車牌競(jìng)拍人員中,隨機(jī)抽取了人,對(duì)他們的擬報(bào)價(jià)價(jià)格進(jìn)行了調(diào)查,得到如下頻數(shù)分布表和頻率分布直方圖:

報(bào)價(jià)區(qū)間(萬元)

頻數(shù)

(i)求、的值及這位競(jìng)拍人員中報(bào)價(jià)大于萬元的概率;

(ii)若月份車牌配額數(shù)量為,假設(shè)競(jìng)拍報(bào)價(jià)在各區(qū)間分布是均勻的,請(qǐng)你根據(jù)以上抽樣的數(shù)據(jù)信息,預(yù)測(cè)(需說明理由)競(jìng)拍的最低成交價(jià).

參考公式及數(shù)據(jù):①回歸方程,其中,

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足,則的前20項(xiàng)和為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】蚌埠市某中學(xué)高三年級(jí)從甲(文)、乙(理)兩個(gè)科組各選出名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲組學(xué)生的平均分是,乙組學(xué)生成績的中位數(shù)是

1)求的值;

2)計(jì)算甲組位學(xué)生成績的方差

3)從成績?cè)?/span>分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求甲組至少有一名學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若fx)<2x在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;

2)若函數(shù)y=fx)在[m,n]上的值域是[mn],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案