(本題滿分14分)

為了解某班學生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:

 

喜愛打籃球

不喜愛打籃球

合計

男生

 

5

 

女生

10

 

 

合計

 

 

50

已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為

(1)請將上面的列聯(lián)表補充完整;

(2)是否有99.5%的把握認為喜愛打籃球與性別有關(guān)?說明你的理由;

(3)已知喜愛打籃球的10位女生中,還喜歡打羽毛球,還喜歡打乒乓球,還喜歡踢足球,現(xiàn)再從喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進行其他方面的調(diào)查,求不全被選中的概率.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 (參考公式:,其中

 

【答案】

 

(1)略

(2) 有99.5%的把握認為喜愛打籃球與性別有關(guān).

(3)

【解析】

解:(1) 列聯(lián)表補充如下:-----------------------------------------------------3分

 

喜愛打籃球

不喜愛打籃球

合計

男生

20

5[來源:ZXXK]

25

女生

10

15

25

合計

30

20

50

(2)∵------------------------5分

∴有99.5%的把握認為喜愛打籃球與性別有關(guān).------------------------------------------6分

(3)從10位女生中選出喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結(jié)果組成的基本事件如下:

,

表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于, 5個基本事件組成,

所以,---------------------------------------------------------------------------------11分

由對立事件的概率公式得.--------------------------------------12分

 

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標與參數(shù)方程在極坐標系中,直線l 的極坐標方程為θ=
π
3
(ρ∈R ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標.
B.選修4-5:不等式選講
設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足。

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習冊答案