9.在等差數(shù)列{an}中,2(a1+a4+a7)+3(a9+a11)=24,則S13+2a7=( 。
A.17B.26C.30D.56

分析 利用等差數(shù)列的通項(xiàng)公式性質(zhì)及其求和公式即可得出.

解答 解:由2(a1+a4+a7)+3(a9+a11)=24,
利用等差數(shù)列的性質(zhì)可得:6a4+6a10=24,∴2a7=4,解得a7=2.
則S13+2a7=$\frac{13({a}_{1}+{a}_{13})}{2}$+2a7=15a7=30.
故選:C.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式性質(zhì)及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知一個(gè)幾何體的三視圖如圖,求出它的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)f(x)=x3+3x+sinx,x∈R,若當(dāng)0<θ<$\frac{π}{2}$時(shí),不等式f(msinθ)+f(1-m)>0恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,1]B.[1,+∞)C.$({\frac{1}{2},1})$D.$({\frac{1}{2},1}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知A={x|3≤x≤22},B={x|2a+1≤x≤3a-5},B⊆A,則a的取值范圍為(-∞,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖1,已知四邊形ABFD為直角梯形,AB∥DF,∠ADF=$\frac{π}{2}$,BC⊥DF,△AED為等邊三角形,AD=$\frac{{10\sqrt{3}}}{3}$,DC=$\frac{{2\sqrt{7}}}{3}$,如圖2,將△AED,△BCF分別沿AD,BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,連接EF,DF,設(shè)G為AE上任意一點(diǎn).

(1)證明:DG∥平面BCF;
(2)若GC=$\frac{16}{3}$,求$\frac{EG}{GA}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2f(x-2),x∈(1,+∞)}\\{1-|x|,x∈[-1,1]}\end{array}\right.$,若關(guān)于x的方程f(x)-loga(x+1)=0(a>0且a≠1)在區(qū)間[0,5]內(nèi)恰有5個(gè)不同的根,則實(shí)數(shù)a的取值范圍是(  )
A.(1,$\sqrt{3}$)B.($\root{4}{5}$,+∞)C.($\sqrt{3}$,+∞)D.($\root{4}{5}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知某圓圓心在x軸上,半徑長為5,且截y軸所得線段長為8,求該圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)是一次函數(shù),g(x)是反比例函數(shù),且滿足f[f(x)]=x=2,g(1)=-1.
(1)求函數(shù)f(x)和g(x);
(2)設(shè)h(x)=f(x)+g(x),判斷函數(shù)h(x)在(0,+∞)上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an},{bn},{cn}滿足:a1=3,當(dāng)n≥2時(shí),an-an-1=4n;對(duì)于任意的正整數(shù)n,c1+2c2+…+2n-1cn=nan,bn=6an-2ncn,設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn
(I)求數(shù)列{cn}的通項(xiàng)公式;
(II)求滿足Sn<220的正整數(shù)n的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案